
IMAQ™ Vision for
LabWindows®/CVI™

IMAQ Vision for LabWindows/CVI
February 1997 Edition
Part Number 321424A-01
© Copyright 1997 National Instruments Corporation. All rights reserved.

186,

0,
support@natinst.com
E-mail: info@natinst.com
FTP Site: ftp.natinst.com
Web Address: http://www.natinst.com

BBS United States: (512) 794-5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

(512) 418-1111

Tel: (512) 795-8248
Fax: (512) 794-5678

Australia 02 9874 4100, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 09 527 2321, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3
Israel 03 5734815, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456,
Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886,
Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 120
U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Internet Support

Bulletin Board Support

Fax-on-Demand Support

Telephone Support (U.S.)

International Offices

Important Information

ng
denced
hat do
nty
r free.

tside
pping

ly
serves
. The
ble for

ction
uments
ovided
he

ties, or

nical,
,

ability

on the
g

itional
s injury
uments
ed to
Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programmi
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evi
by receipts or other documentation. National Instruments will, at its option, repair or replace software media t
not execute programming instructions if National Instruments receives notice of such defects during the warra
period. National Instruments does not warrant that the operation of the software shall be uninterrupted or erro

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the ou
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shi
costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been careful
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments re
the right to make changes to subsequent editions of this document without prior notice to holders of this edition
reader should consult National Instruments if errors are suspected. In no event shall National Instruments be lia
any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’ S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS
WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of National
Instruments will apply regardless of the form of action, whether in contract or tort, including negligence. Any a
against National Instruments must be brought within one year after the cause of action accrues. National Instr
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty pr
herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow t
National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third par
other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mecha
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part
without the prior written consent of National Instruments Corporation.

Trademarks
IMAQ™ and CVI™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS
National Instruments products are not designed with components and testing intended to ensure a level of reli
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving
medical or clinical treatment can create a potential for accidental injury caused by product failure, or by errors
part of the user or application designer. Any use or application of National Instruments products for or involvin
medical or clinical treatment must be performed by properly trained and qualified medical personnel, and all trad
medical safeguards, equipment, and procedures that are appropriate in the particular situation to prevent seriou
or death should always continue to be used when National Instruments products are being used. National Instr
products are NOT intended to be a substitute for any form of established process, procedure, or equipment us
monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v IMAQ Visio
Contents
xi
.xii
.xiii

..1-1

.1-1
-2

.2-1
.2-3
..2-5
..2-9
-9
-9
-10
2-11
12
-12
-13
5

-1
-1
-2
-3
-3
About This Manual
Organization of This Manual ...
Conventions Used in This Manual..
Customer Communication ..

Chapter 1
Introduction

System Set Up and Operation..
System Requirements ...
Installation ...1

Chapter 2
Basic Concepts

About Images..
Overview...
Source, Destination, and Mask Images..
Processing Options ..

Connectivity ..2
Example ..2

Structuring Element Descriptor...2
The hexaProcessing Field..

User Pointers and IMAQ Vision for LabWindows/CVI Pointers2-
IPI_GetLine...2
IPI_Histogram() ..2

Starting with IMAQ Vision for LabWindows/CVI ...2-1

Chapter 3
Management Functions

IPI_InitSys ...3
IPI_Create ..3
IPI_Dispose ..3
IPI_SetErrorMode ..3
IPI_GetErrorMode ...3
n for LabWindows/CVI

Contents

-3
-4
-4

. 4-1

. 4-2
2
-3
4
5

-7
4-8
8
9
0

10
11
-11
12
-12
-12
-15
. 4-15
-16
-16
-17
17
18
-18
. 4-19
-19
20

-20
IPI_GetLastError ... 3
IPI_ProcessError .. 3
IPI_CloseSys ... 3

Chapter 4
Display and File Functions

Display..
Display Basics ..

IPI WindDraw .. 4-
IPI_WSetPalette ... 4
IPI_SetWindowAttributes ... 4-
IPI_SetWindow2DAttributes ... 4-
IPI_GetWindowAttribute .. 4-5
IPI_GetWindow2DAttributes .. 4-7
IPI_WindClose .. 4

Display Tools...
IPI_WindToolsSetup ... 4-
IPI_SetWindToolsAttribute ... 4-
IPI_GetWindToolsAttribute .. 4-1
IPI_SetActiveTool ... 4-
IPI_GetActiveTool .. 4-
IPI_WindToolsClose ... 4
IPI_InstallWCallback .. 4-
IPI_RemoveWCallback ... 4
IPI_GetLastEvent .. 4
IPI_GetLastWEvent ... 4

Regions of Interest..
IPI_SetWROI ... 4
IPI_GetWROI .. 4
IPI_ClearWROI ... 4
IPI_ROIToMask .. 4-
IPI_MaskToROI .. 4-
IPI_FreeROI .. 4

Files ..
IPI_ReadFile .. 4
IPI_WriteFile ... 4-
IPI_GetFileInfo .. 4
IMAQ Vision for LabWindows/CVI vi © National Instruments Corporation

Contents

.5-1
-1
-2
-2
-3
-4
-4
-5
-6
-6
-7
-7
-8
-9
-10
-11
-12
-13
-14
.5-14
-14
-15
-16
-17
.5-18
-18
-19
19

6-1
-1
-2
3
-4
-5
6

Chapter 5
Tools Functions

Tools Image ..
IPI_GetImageInfo ..5
IPI_SetImageSize ...5
IPI_SetImageCalibration ..5
IPI_SetImageOffset ..5
IPI_Expand ...5
IPI_Extract ...5
IPI_Resample ...5
IPI_Copy ..5
IPI_ImageToImage ..5
IPI_GetPixelValue ...5
IPI_SetPixelValue ..5
IPI_GetRowCol ..5
IPI_SetRowCol ..5
IPI_GetLine ..5
IPI_SetLine ..5
IPI_ImageToArray ...5
IPI_ArrayToImage ...5
IPI_GetPixelAddress ..5

Tools Diverse..
IPI_DrawLine ...5
IPI_DrawRect ...5
IPI_DrawOval ..5
IPI_MagicWand ...5

Conversion ..
IPI_Convert ..5
IPI_Cast ..5
IPI_ConvertByLookup ...5-

Chapter 6
Image Processing Functions

Arithmetic Operators ...
IPI_Add ..6
IPI_Subtract ...6
IPI_Multiply ...6-
IPI_Divide ..6
IPI_Modulo ..6
IPI_MulDiv ..6-
© National Instruments Corporation vii IMAQ Vision for LabWindows/CVI

Contents

6-7
-7
-8
-8
-9
-10
11
.. 6-11
-11
-12
13
14
15
17
-18
-19
. 6-20
21
-28
-30
-31
-32
6-33
34
35
-36
-37
-38
-38
-39
40
-40
-41
-42
-42
. 6-43
-43
-45
-46
47
-48
-49
Logic Operators ...
IPI_And ... 6
IPI_Or .. 6
IPI_Xor .. 6
IPI_Mask ... 6
IPI_Compare .. 6
IPI_LogDiff ... 6-

Processing..
IPI_Label ... 6
IPI_Threshold .. 6
IPI_MultiThreshold ... 6-
IPI_AutoBThreshold ... 6-
IPI_AutoMThreshold ... 6-
IPI_MathLookup ... 6-
IPI_UserLookup .. 6
IPI_Equalize .. 6

Filters..
IPI_GetConvolutionMatrix .. 6-
IPI_Convolute .. 6
IPI_GrayEdge .. 6
IPI_LowPass .. 6
IPI_NthOrder ... 6

Morphology ...
IPI_Morphology .. 6-
IPI_GrayMorphology .. 6-
IPI_Circles ... 6
IPI_Convex .. 6
IPI_Danielsson ... 6
IPI_Distance .. 6
IPI_Separation ... 6
IPI_FillHole ... 6-
IPI_LowHighPass .. 6
IPI_RejectBorder ... 6
IPI_Segmentation .. 6
IPI_Skeleton .. 6

Analysis ..
IPI_Histogram ... 6
IPI_Quantify .. 6
IPI_Centroid .. 6
IPI_LineProfile .. 6-
IPI_BasicParticle ... 6
IPI_Particle .. 6
IMAQ Vision for LabWindows/CVI viii © National Instruments Corporation

Contents

-51
53
.6-55
55
-56
-57
-57
.6-58
-59
-60
-60
-61
-61
-62
-62
-63
4

65
66
66
67
68
-68
-69
.6-69
-71
-72
-73
-73
-75
76
-78
-78
-79
-79
80
81
-81
-82
-83
IPI_ParticleCoeffs ..6
IPI_ParticleDiscrim ..6-

Geometry ..
IPI_3DView ...6-
IPI_Rotate ..6
IPI_Shift ...6
IPI_Symmetry ..6

Complex..
IPI_FFT ..6
IPI_InverseFFT ..6
IPI_ComplexConjugate ..6
IPI_ComplexFlipFrequency ...6
IPI_ComplexAttenuate ...6
IPI_ComplexTruncate ..6
IPI_ComplexAdd ...6
IPI_ComplexSubtract ...6
IPI_ComplexMultiply ..6-6
IPI_ComplexDivide ...6-
IPI_ComplexImageToArray ..6-
IPI_ArrayToComplexImage ..6-
IPI_ComplexPlaneToArray ...6-
IPI_ArrayToComplexPlane ...6-
IPI_ExtractComplexPlane ..6
IPI_ReplaceComplexPlane ..6

Color ...
IPI_ExtractColorPlanes ..6
IPI_ReplaceColorPlanes ..6
IPI_ColorEqualize ..6
IPI_ColorHistogram ...6
IPI_ColorThreshold ...6
IPI_ColorUserLookup ..6-
IPI_GetColorPixel ..6
IPI_SetColorPixel ..6
IPI_GetColorLine ...6
IPI_SetColorLine ...6
IPI_ColorImageToArray ..6-
IPI_ArrayToColorImage ..6-
IPI_ColorConversion ...6
IPI_IntegerToColor ..6
IPI_ColorToInteger ..6
© National Instruments Corporation ix IMAQ Vision for LabWindows/CVI

Contents

-9
-9

2-10
. 2-11
-11

4-13

6-23
6-24
6-25
6-25
6-26
6-26
6-26
6-27
6-27
. 6-27
. 6-28
. 6-28
Appendix
Customer Communication

Index

Figures
Figure 2-1. Connectivity ... 2
Figure 2-2. Example of Connectivity Processing ... 2
Figure 2-3. Structuring Element ...
Figure 2-4. Square vs. Hexagonal Frames ...
Figure 2-5. Structuring Element Morphological Results .. 2

Tables
Table 2-1. IMAQ Vision for LabWindows/CVI Image Types 2-2
Table 2-2. IMAQ Vision for LabWindows/CVI Function Types 2-4

Table 4-1. Event/Tool Coordinates ...

Table 6-1. Gradient 3x3 ...
Table 6-2. Gradient 5x5 ...
Table 6-3. Gradient 7x7 ...
Table 6-4. Laplacian 3x3 ...
Table 6-5. Laplacian 5x5 ...
Table 6-6. Laplacian 7x7 ...
Table 6-7. Smoothing 3x3 ...
Table 6-8. Smoothing 5x5 ...
Table 6-9. Smoothing 7x7 ...
Table 6-10. Gaussian 3x3 ...
Table 6-11. Gaussian 5x5 ...
Table 6-12. Gaussian 7x7 ...
IMAQ Vision for LabWindows/CVI x © National Instruments Corporation

© National Instruments Corporation xi IMAQ Vision
About
This

Manual
e

e

t

The IMAQ Vision for LabWindows/CVI user manual describes the
features, functions, and operation of the IMAQ Vision for
LabWindows/CVI toolkit. To use this manual effectively, you must b
familiar with image processing, LabWindows/CVI, and your image
capture hardware.

Organization of This Manual
This manual is designed to accompany the IMAQ Vision for
LabWindows/CVI software. Read this section prior to writing C cod
that uses any of the IMAQ Vision functions.

The IMAQ Vision for LabWindows/CVI user manual is organized as
follows:

• Chapter 1, Introduction, describes IMAQ Vision, the image
processing and analysis library for LabWindows/CVI from
National Instruments. IMAQ Vision is fully integrated with
LabWindows/CVI making it a powerful development environmen
for image processing. You can use it for almost any type of
scientific or industrial tasks, from medical microscopy to quality
control.

• Chapter 2, Basic Concepts, explains the basic ideas underlying
image processing with IMAQ Vision for LabWindows/CVI.

• Chapter 3, Management Functions, describes the IMAQ Vision
management functions.

• Chapter 4, Display and File Functions, describes the IMAQ Vision
display and file functions.

• Chapter 5, Tools Functions, describes the IMAQ Vision tools
functions.

• Chapter 6, Image Processing Functions, describes the IMAQ
Vision image processing functions.
 for LabWindows/CVI

About This Manual

r

n

em,

nce,

m
x
per

d for

ets

 drive

rts
• Appendix, Customer Communication, contains forms you can use
to request help from National Instruments or to comment on ou
products and manuals.

• The Index contains an alphabetical list of key terms and topics i
this manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

bold Bold text denotes a parameter, menu name, palette name, menu it
return value, function panel item, or dialog box button or option.

italic Italic text denotes mathematical variables, emphasis, a cross refere
or an introduction to a key concept.

bold italic Bold italic text denotes a note.

monospace Text in this font denotes text or characters that you literally enter fro
the keyboard. Sections of code, programming examples, and synta
examples also appear in this font. This font also is used for the pro
names of disk drives, paths, directories, programs, subprograms,
subroutines, device names, variables, filenames, and extensions, an
statements and comments taken from program code.

<> Angle brackets enclose the name of a key on the keyboard—for
example, <PageDown>.

- A hyphen between two or more key names enclosed in angle brack
denotes that you must simultaneously press the named keys—for
example, <Control-Alt-Delete>.

<Control> Key names are capitalized.

paths Paths in this manual are denoted using backslashes (\) to separate
names, directories, and files, as in
C:\dir1name\dir2name\filename .

This icon to the left of bold italicized text denotes a note, which ale
you to important information.

IMAQ Vision for LabWindows/CVI xii © National Instruments Corporation

About This Manual

cts
 our
ake
Customer Communication
National Instruments wants to receive your comments on our produ
and manuals. We are interested in the applications you develop with
products, and we want to help if you have problems with them. To m
it easy for you to contact us, this manual contains comment and
configuration forms for you to complete. These forms are in the
Appendix,Customer Communication, at the end of this manual.
© National Instruments Corporation xiii IMAQ Vision for LabWindows/CVI

© National Instruments Corporation 1-1 IMAQ Vision
Chapter

1
Introduction
y

t

m

rol

 are

g

r.

Welcome to IMAQ Vision, the image processing and analysis librar
for LabWindows/CVI from National Instruments. IMAQ Vision is fully
integrated with LabWindows/CVI making it a powerful developmen
environment for image processing.

You can use it for almost any type of scientific or industrial task, fro
medical microscopy to quality control. After you have familiarized
yourself with IMAQ Vision for LabWindows/CVI, you will find it easy
to write applications that automatically capture, measure, and cont
processes based on image processing.

System Set Up and Operation
This manual presumes that you have already written C programs and
familiar with the LabWindows/CVI environment. Terminology in this
document is consistent with C language and LabWindows/CVI
terminology.

IMAQ Vision for LabWindows/CVI is currently available for
LabWindows/CVI 4.0 for the Windows 95 and Windows NT operatin
systems.

System Requirements
• An IBM PC or compatible computer with an 80486 DX2 processo

However, National Instruments strongly recommends a Pentium
processor.

• A SVGA display board capable of displaying 800x600 pixels in
32,768 or 16 million colors

• 16 MB of Ram

• A hard drive

• Microsoft Windows 95 or Windows NT

• LabWindows/CVI version 4.0.1
 for LabWindows/CVI

Chapter 1 Introduction
Installation
Launch the Setup.exe file from your IMAQ Vision distribution disk.
If your LabWindows/CVI folder is not C:\CVI401 , you must change
the destination directory.
IMAQ Vision for LabWindows/CVI 1-2 © National Instruments Corporation

© National Instruments Corporation 2-1 IMAQ Vision
Chapter

2
Basic Concepts
with

,
e
is to

).
ion
r

uire
lane
e.

d

 bit

nary
his
ier
This chapter explains the basic ideas underlying image processing
IMAQ Vision for LabWindows/CVI.

About Images
An image is a function of the light intensity f(x,y) where x and y
represent the spatial coordinates of a point in an image and wheref is
the brightness of the point (x,y). In other words, an image is a two
dimensional array of values which represent light intensity. These
values are encoded with a range determined by the pixel depth.

Several factors influence the decision to encode an image in 8 bits
16 bits or in a floating value. These factors include the nature of th
image, the type of image processing to use, and the type of analys
perform. For example, 8-bit encoding is sufficient if you plan to
perform morphology analysis (surface, elongation factor, and so on
On the other hand, if you want to obtain a highly precise quantificat
of the light intensity from an image or a region of an image, 16-bit o
32-bit (floating point) encoding is required.

An image can consist of one or several planes. It is possible to acq
and process a real color image which contains three planes. Each p
represents the intensities of the primary colors: red, green, and blu
This image type is also known as RGB Chunky. It is encoded in 32 bits
including 8 bits for the alpha channel (not used in IMAQ Vision), an
8 bits each for the red, green, and blue planes. The most common
operation on this image type is the extraction of the color, light,
saturation, or hue component from the image. The final result is an 8
image that you can process as a standard monochrome image.

Complex images are made up of two planes: the Real and the Imagi
planes; each pixel is encoded as two times a 32-bit floating value. T
type of image is the result of mathematical calculations called Four
Transforms; hence the name complex image. They are particularly
intended for processing images in the frequency domain.
 for LabWindows/CVI

Chapter 2 Basic Concepts

e

ense

 in

el

hese

 the
e

its as

Q
IMAQ Vision for LabWindows/CVI uses all the aforementioned imag
types. However, certain operations do not have a practical purpose
when used on certain image types. For example, it does not make s
to apply the logic operator AND to a Complex image. IMAQ Vision
cannot use certain other image types, particularly images encoded
files as 1-, 2-, or 4-bit images. In these cases, IMAQ Vision
automatically transforms the images into 8-bit images (minimum pix
depth for IMAQ Vision) when you open the image file. This
transformation is transparent to you and has no effect on the use of t
image types.

In IMAQ Vision, the image type is defined when the IPI_Create()
function creates the image object. The most common image type for
scientific and industrial fields is 8 bit (in other words, a single imag
plane encoded using 8 bits per pixel). However, IMAQ Vision is
designed to acquire and process images encoded in 10, 12, or 16 b
well as in floating point and true color (RGB).

The following are used to define the image type for each of the IMA
Vision functions.

Table 2-1. IMAQ Vision for LabWindows/CVI Image Types

Value Description

IPI_PIXEL_U8 8 bits per pixel (unsigned, standard
monochrome)

IPI_PIXEL_I16 16 bits per pixel (signed)

IPI_PIXEL_SG 32 bits per pixel (floating point)

IPI_PIXEL_COMPLEX 2 times 32 bits per pixel (floating point)
(native format after a FFT)

IPI_PIXEL_RGB 32 bits per pixel (RGB chunky, standard
color)
IMAQ Vision for LabWindows/CVI 2-2 © National Instruments Corporation

Chapter 2 Basic Concepts

o

l

this

hese
 or

 in
ry

ew
er,

nt

s

re
An IMAQ Vision image has the following other attributes in addition t
its type and size:

• Calibration

• Image border

The calibration attribute defines the physical horizontal and vertica
dimensions of the pixels. With the ability to calibrate two axes
independently, you can correct defaults resulting from the sensor (
is not uncommon). Only calculations based on morphological
transformations (surface, perimeter, and so on) require the use of t
coefficients. These coefficients have no effect on either processing
operations between images.

An image border also exists. This border physically reserves space
the image. It is completely transparent to you. Borders are necessa
when you want to perform a morphological transformation, a
convolution, or a particle analysis. All these processes include an
operation between neighboring pixels. These operations assign a n
value to a pixel in relation to the value of its neighbor. With the bord
operations can treat all pixels the same way.

Overview
The IMAQ Vision installation adds three important files in your curre
LabWindows/CVI directory:

• IMAQ_CVI.H contains all constants, enumerated types, structure
and prototypes related to IMAQ Vision.

• IMAQ_CVI.FP contains all functions front panels. These panels a
similar to the other LabWindows/CVI functions front panels.

• IMAQ_CVI.LIB contains the code of the IMAQ Vision functions.
This library is compatible with Microsoft VISUAL C.
© National Instruments Corporation 2-3 IMAQ Vision for LabWindows/CVI

Chapter 2 Basic Concepts

sing

ach

nd

on,
he

 and

ent,

,
r.
The IMAQ Vision function tree (IMAQ_CVI.FP) contains separated
classes corresponding to a group or a type of function. When choo
IMAQ Vision in the LabWindows/CVI Instrument menu, the
following table appears.

Table 2-2. IMAQ Vision for LabWindows/CVI Function Types

Function Type Description

Analysis... Functions analyzing the contents of an image. Basic and complex particle
detection. Extraction of measurements and morphological coefficients for e
object in an image.

Color... Functions for color image processing and analysis (histogram, threshold) a
the manipulation of color image planes (conversions).

Complex... Fast Fourier Transforms (FFT), inverse FFT, truncation, attenuation, additi
subtraction, multiplication, and division of complex images. Functions for t
extraction and manipulation of complex planes.

Conversion... Linear or non-linear conversions from one image type into another.

Display... Functions covering all aspects of image visualization and image window
management. You can control up to 16 image windows. Image window
managers are also included so you can select various shapes for creating
manipulating a region of interest.

Files... Functions for reading and writing images from and to disk files.

Filters... Contains functions such as convolution and non linear filters: median, gradi
low pass, Prewitt, Sobel, Roberts, sigma.

Geometry... Includes functions for 3D view, rotate, shift, and symmetry.

Management... Functions initializing the IMAQ Vision subsystem, creating, listing, and
disposing of image structures. Also includes error handling for all the IMAQ
Vision functions.

Morphology... Morphology functions processing binary images. Include erosion, dilation,
closing, opening, edge detection, thinning, thickening, hole filling, low pass
high pass, distance mapping, and rejection of particles touching the borde
Morphology functions for modifying gray scale images include erosion,
dilation, closing, opening, and auto-median.
IMAQ Vision for LabWindows/CVI 2-4 © National Instruments Corporation

Chapter 2 Basic Concepts

s
n

o

ss.

ne
R,
ant.
ges

an
Source, Destination, and Mask Images
IMAQ Vision for LabWindows/CVI uses internal tables for all image
and private data structures. The only way to initialize the IMAQ Visio
internal tables is by calling one of these two functions:

• IPI_Create();

• IPI_InitSys();

IPI_Create() implicitly calls the IPI_InitSys() . Do not use any
other function prior to one of these two calls. You must end IMAQ
Vision function calls by calling IPI_CloseSys() . This destroys all
internal tables and sets them in the initial state. Notice that
IPI_Create() is often the first function to be used.

Under IMAQ Vision, an image is a private structure. The only way t
create images is by calling IPI_Create() . IPI_Create() returns an
image reference you systematically use when calling other IMAQ
Vision functions. However, with functions such as
IPI_GetImageInfo() , you have access to everything you need to
know about image structure and mapping, including the pixel addre

Operator... Arithmetic, logic, and comparison functions. Addition, subtraction,
multiplication, division, ratio and modulo between two images or between o
image and a constant. Logic operators include AND, NAND, OR, NOR, XO
XNOR and LogDiff between two images or between one image and a const
Clear or Set (affect) as a function of a relational operator between two ima
or between one image and a constant. Masking, extraction of a minimum,
maximum, or average can be completed between two images or between
image and a constant.

Processing... Threshold, label, LUT (lookup table) transformation, and so on.

Tools(diverse)... Functions to draw shapes into an image.

Tools(Image)... A set of diverse functions for the manipulation of images (copy, reduction,
expansion, extraction, and so on). Also included is a function to get all
information about the image attributes and pixel mapping.

Tools(Pixels)... Function to transform the contents of an image from and to a user array.

Table 2-2. IMAQ Vision for LabWindows/CVI Function Types (Continued)

Function Type Description
© National Instruments Corporation 2-5 IMAQ Vision for LabWindows/CVI

Chapter 2 Basic Concepts

The

ce.
 a

t

er

t

e.

at

he
No limitation exists in the number or size of images you can create.
only limit is the amount of memory installed in your computer.

Depending on the function, you might need one or more image
references. In some cases, you might only need one image referen
Typically, the functions that analyze an image, read an image from
file, or transform a user array into an image (IPI_ArrayToImage() ,
for example) use one image reference only. In other cases you migh
need to use a second image as a mask image.

If a function has a mask_image parameter, this indicates that the
function process or analysis is dependent on the contents of anoth
image (the mask_image). Each pixel in image is processed if the
corresponding pixel in the mask_image has a value other than zero.
This image mask must be an image type IPI_PIXEL_U8 and its contents
are binary (zero or other than zero).

If you want to apply a process or an analysis function to the entire
image, insert the keyword IPI_NOMASK instead of a mask image
reference. As an example, see the following implementation varian
calling IPI_Histogram() :

• IPI_Histogram(myImage, myMaskImage, ...);

This call performs a histogram computation using a mask imag

• IPI_Histogram(myImage, IPI_NOMASK,...);

This call performs a histogram computation on the full image.

Note: IPI_NOMASK is the default value for all function panels that use a
mask_image .

All IMAQ Vision functions that process the contents of an image (th
is, that modifies the pixel values) have source_image and a
dest_image input parameters. This is the most common type of
prototype in IMAQ Vision. The source _image receives the image to
process. The dest _image can receive either another image or the
original one, depending on your wishes. If two different images are
used for the two inputs, the original image source _image is not
affected. If the source_image and dest_image receive the same
image, the processed image is placed into the original image and t

IMAQ Vision for LabWindows/CVI 2-6 © National Instruments Corporation

Chapter 2 Basic Concepts

he

 the

d,

rent
s

e

original image data is lost. See the following examples applied on t
IPI_Threshold() function:

• IPI_Threshold(myImage, myImage, 0, 128, 1,TRUE);

This applies a threshold to the image using the same image for
source and destination. The content of the image changes.

• IPI_Threshold(myImage, myBinaryImage, 0, 128, 1,

TRUE);

This applies a threshold to the image using a destination image
different from the source. The source image remains unchange
while the destination image myBinaryImage contains the result.

The dest_image is the image that receives the process results.
Depending on the function, its type can be either the same as or diffe
from that of the source_image . In later chapters, this manual describe
each function and the image types allowed for their image input. In all
cases, the size of the image connected to dest_image is irrelevant
because the function modifies it automatically to correspond to the
source image size.

Other functions such as linear filters are able to process the image
according to a mask_image . This kind of function has three image
references as input parameters: source_image , mask_image and
dest_image . See the following implementations of the
IPI_GrayEdge() function:

• IPI_GrayEdge(myImage, IPI_NOMASK, myImage,

IPI_EDG_PREWITT, 0);

This function performs the process on the entire image using th
same image as source and destination.

• IPI_GrayEdge(myImage, myMaskImage, myImage,

IPI_EDG_PREWITT, 0);

This function performs the process according a mask using the
same image as source and destination.

• IPI_GrayEdge(myImage, myMaskImage, myEdgeImage,

IPI_EDG_PREWITT, 0);

This function performs the process according to a mask using a
different image as destination.

• IPI_GrayEdge(myImage, IPI_NOMASK, myEdgeImage,

IPI_EDG_PREWITT, 0);

This function performs the process on the entire image using a
different image as destination.
© National Instruments Corporation 2-7 IMAQ Vision for LabWindows/CVI

Chapter 2 Basic Concepts

o
 can
t in
ce

ne.

ne.

nd

 the
een

 into

 into
Some functions perform arithmetic or logical operations between tw
images. There are two source images for a destination image. You
perform an operation between two images and then store the resul
another image. You can also store the result in one of the two sour
images if you consider the original data unnecessary. The following
examples show the possible combinations using IPI_Add() function:

• IPI_Add(myImageA, myImageB, myResultImage, 0);

This function adds two images and puts the result into a third o

Note: In this case the three images are all different. myImageA and myImageB are
intact after processing and the result of this operation is stored in
myResultImage .

• IPI_Add(myImageA, myImageB, myImageA, 0);

This function adds two images and puts the result into the first o

• IPI_Add(myImageA, myImageB, myImageB, 0);

This function adds two images and puts the result into the seco
one.

Most operations between two images require that the images have
same size. However, arithmetic operations can be performed betw
two different image types (in other words, 8-bit and 16-bit).

• IPI_Add(myImage, IPI_USECONSTANT, myResultImage,

25);

This function adds the image and a constant and puts the results
another image.

• IPI_Add(myImage, IPI_USECONSTANT, myImage, 25);

This function adds the image and a constant and puts the result
the original image.

IMAQ Vision for LabWindows/CVI 2-8 © National Instruments Corporation

Chapter 2 Basic Concepts

is

f

s.
8,
Processing Options

Connectivity
In some functions (primarily the morphology function group), there
a parameter with which you can specify the pixel connectivity. This
parameter, connectivity_8 , selects how the algorithm determines i
two adjacent pixels are connected or are part of the same particle.

Figure 2-1. Connectivity

Example
The gray points in the original image define the particles. In the
subsequent images, various shades of gray distinguish the particle
Using connectivity 4, six particles are detected. Using connectivity
three particles are detected.

Figure 2-2. Example of Connectivity Processing

Connectivity 4 Connectivity 8

Connectivity 4 Connectivity 8 ParticlesOriginal Image
© National Instruments Corporation 2-9 IMAQ Vision for LabWindows/CVI

Chapter 2 Basic Concepts

o

e
ess.

al

7x7
ing
.

 the
ce
Structuring Element Descriptor
A structuring element descriptor is a specific IMAQ Vision structure
defined as (see IMAQ_CVI.H):

typedef struct {

int strucElemWidth;

int strucElemHeight;

int *strucElements;

int hexaProcessing;

} IPIMorphoDesc, * IPIMorphoDescPtr;

It is used specifically for morphological transformations. The first tw
fields strucElemWidth and strucElemHeight set the geometry and
the size of the structuring element itself. The third field
strucElements is a pointer to the structuring element values. The
values contained in this structuring element are either 0 or 1. Thes
values dictate which pixels are to be taken into account during proc

The use of structuring elements requires that the image contains a
border. The application of a 3x3 structuring element requires a minim
border size of 1. In the same way, structuring elements of 5x5 and
require a minimal border size of 2 and 3 respectively. Bigger structur
elements require corresponding increases in the image border size

Figure 2-3. Structuring Element

The coordinates of the central pixel (the pixel being processed) are
determined as a function of the structuring element. In this example
coordinates of the processed pixels are (1,1), (2,2), and (3,3). Noti
that the origin is always the upper, left-hand corner pixel.

3x3 5x5 7x7
IMAQ Vision for LabWindows/CVI 2-10 © National Instruments Corporation

Chapter 2 Basic Concepts

o
ing
her

om
ver,

g
. As
el

nal

 the

l
 of
ts

.
The hexaProcessing Field
Remember that a digital image is a 2D array of pixels arranged in a
regular rectangular grid. In image processing, this grid can have tw
different pixel frames: square or hexagonal. As a result the structur
element applied during a morphological transformation can have eit
a square or hexagonal frame. You make the decision to use a square
frame or hexagonal frame. This decision affects how the algorithm
analyzes the image when you process it with functions that use this
frame concept. The chosen pixel frame directly affects the output fr
morphological measurements (perimeter, surface, and so on). Howe
the frame has no effect on the availability of the pixel in memory.

By default the square frame is used in IMAQ Vision (hexaProcessin
contains 0). Use a hexagonal frame to obtain highly precise results
shown below, with a hexagonal plane, the even lines shift a half pix
to the right. Therefore, the hexagonal frame places the pixels in a
configuration similar to a true circle. In those cases when the hexago
frame is used, only the structuring element values that possess an x are
used.

Figure 2-4. Square vs. Hexagonal Frames

It is clear that the size of the structuring element directly determines
speed of the morphological transformation. Different results occur
when the contents of the structuring element are changed. Nationa
Instruments recommends that you possess a solid comprehension
morphology or spend some time learning how to use these elemen
before changing the standard structuring element (filled with 1s).

The structuring elements shown below each have a different result

Figure 2-5. Structuring Element Morphological Results

Square 3x3 Hexagonal 3x3

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

1

1

0

1

1

0

0

1

1

0

1

1

0

1

1

© National Instruments Corporation 2-11 IMAQ Vision for LabWindows/CVI

Chapter 2 Basic Concepts

g
 a

ines

y

.
 In
pute

the
ou
The standard way to perform morphological operations is to use a
structuring element containing 1, no matter what size the structurin
element is. To simplify the use of morphological functions that need
Structuring element descriptor , IMAQ Vision has three
standard MorphoDescPtr functions for three different sizes:

• IPI_MO_STD3X3—pointing to a 3x3 structuring element filled with
nine 1 values.

• IPI_MO_STD5X5—pointing to a 5x5 structuring element filled with
twenty-five 1 values.

• IPI_MO_STD7X7—pointing to a 7x7 structuring element filled with
forty-nine 1 values.

Note: The default value in the IMAQ Vision for LabWindows/CVI morphological
function panel is IPI_MO_STD3X3.

User Pointers and IMAQ Vision
for LabWindows/CVI Pointers

Several IMAQ Vision functions return data, data structure, and data
array. For most of these functions, a parameter you provide determ
the returned data size. Two examples are the buffers used in the
functions IPI_GetLine() and IPI_Histogram() .

IPI_GetLine
IPI_GetLine (IPIImageRef image,Point start,Point end,
int array_format,void *array,int *nb_of_elements);

IPI_GetLine returns all the pixels located under the vector given b
the start point and the end point into a user buffer in the desired
format. The array is the address of memory buffer allocated by you
You must allocate a buffer big enough to receive all the pixel values.
this case, you can use one of the following three approaches to com
and allocate the necessary buffer space:

• Extract the maximum range in the start and the end points using:

max(abs(start.x - end.x), abs (start.y - end.y)) +1

This approach works if you are sure that the points are both in
image space coordinates. If the point coordinates are virtual, y
must allocate an infinite buffer.

IMAQ Vision for LabWindows/CVI 2-12 © National Instruments Corporation

Chapter 2 Basic Concepts

he

e

 an

on

size

ine
 of

n
se a
 the
• Obtain the x and y resolution of the image using
IPI_GetImageInfo() . Next you have to extract the maximum
between the horizontal and the vertical sizes and allocate your
buffer using this value. The real number of pixels copied from t
image into your array is returned by the function in the
nb_of_elements parameter.

• Determine an arbitrary maximum buffer (1024, 2048,...) and us
the nb_of_elements returned by the function to know how much
data is relevant.

IPI_Histogram()
Other cases of using a user pointer can be explained by describing
IPI_Histogram() call as follows:

IPI_Histogram(IPIImageRef image, IPIImageRef,
mask_image,int number_of_classes, float minimum_value,
float maximum_value, int histogram[], IPIHistoReport
*histogram_report);

The histogram[] parameter is an array of integers where the functi
returns the histogram values. The value of number_of_classes
determines the size of this array. You have to be consistent with the
allocated for the histogram buffer and the value passed in
number_of_classes .

Furthermore, it is not easy and might be impossible for you to determ
the necessary buffer size for a set of functions. In this case instead
using a user pointer, the function has to return the pointer. The
IPI_Particle() function, for example, performs a particle detectio
and returns parameters on detected particles. This function cannot u
user pointer because you do not know the number of particles before
function detects them.
© National Instruments Corporation 2-13 IMAQ Vision for LabWindows/CVI

Chapter 2 Basic Concepts

e

ss a
ed

ing

s:

 a
These functions have to allocate their own pointers and return thes
pointers to you. The standard realloc() has a similar use and
behavior. If you pass a pointer to a NULL pointer, IMAQ Vision
allocates a new one adjusted according the required size. If you pa
pointer to a previously allocated pointer, this pointer might be chang
and/or resized. In all cases, you have to free the buffer. The follow
lines show you a typical technique for this kind of function:

int particleCount;

IPIFullPreportPtr myParticleReports = NULL;

IPI_Particle(myImage, IPI_CON8, &particleCount, &myPar-
ticleReports);

.

. processing particle reports...

.

free(myParticleReports);

The following is another typical program processing several image

void procAllImages(IPIImageRef images[], int imageCount)

{

int particleCount, i;

IPIFullPreportPtr myParticleReports = NULL;

for(i=0; i < imageCount; i++)

{

IPI_Particle(images[i], IPI_CON8, &particleCount, &my-
ParticleReports);

.

. processing particle reports.

.

}

free(myParticleReports);

}

You have to implement this technique when you use a function with
parameter named <something>Ptr *<paramname> .
IMAQ Vision for LabWindows/CVI 2-14 © National Instruments Corporation

Chapter 2 Basic Concepts

Q

g a

ge.
ts
Starting with IMAQ Vision for LabWindows/CVI
The IMAQ Vision installation procedure creates a directory named
Samples . The Samples directory contains two sub-directories named
Sample1 and Sample2 . The Sample1 directory contains an IMAQ
Vision example you can read and use before starting your own IMA
Vision based program. The files related to Sample1 are:

• IMAQSample1.prj —the LabWindows project file

• IMAQSample1.h —the header file

• IMAQSample1.c —the source file

• IMAQSample1.uir —the user interface file

In this example, you can see how to call and chain IMAQ Vision
functions such as reading an image file, displaying an image, settin
color palette, performing a threshold, computing and plotting a
histogram, and finally labelling the particles.

The files related to the Sample2 are:

• IMAQSample2.prj —the LabWindows project file

• IMAQSample2.h —the header file

• IMAQSample2.c —the source file

• IMAQSample2.uir —the user interface file

• iron.bmp —the image

Sample2 contains a real-world example of detecting iron particles in
iron ore and measuring the density of these particles. This example
includes loading, thresholding, and labeling the particles in the ima
It also illustrates the use of functions to make specific measuremen
(such as area, perimeter, etc.) of detected particles. Sample2 can only
be used with LabWindows/CVI 4.0.1 or later.
© National Instruments Corporation 2-15 IMAQ Vision for LabWindows/CVI

© National Instruments Corporation 3-1 IMAQ Vision
Chapter

3
Management Functions
y

on

AQ

ge
This chapter describes the IMAQ Vision management functions.
Management functions initialize the IMAQ Vision subsystem and
create, list, and dispose of image structures. These functions also
include error handling for all the IMAQ Vision functions.

IPI_InitSys

IPIError = IPI_InitSys(void);

Purpose
This function initializes the IMAQ Vision memory subsystem. It is implicitly called b
IPI_Create() . One of these two functions must be called prior to any other IMAQ
Vision function. You only have to use this function if you want to use an IMAQ Visi
function before creating an image.

IPI_Create

IPIError = IPI_Create (IPIImageRef *image_ptr, IPIPixelType

pixel_type, int border_size);

Purpose
This function creates an image structure reference. It is the only way to create a IM
Vision image. An image reference is simply called image in the rest of this manual.

After the image is created, its size is NULL. If you want to fill the image pixels by
yourself without using one of the IMAQ Vision functions, you have to resize the ima
pixel space using IPI_SetImageSize() and then get the pixel pointer and mapping
using IPI_GetImageInfo() .

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX
 for LabWindows/CVI

Chapter 3 Management Functions

to

.

 2 is

tions

must
Input
pixel_type indicates the data format of the pixels within the image. The only way
change the image type after creation is to call one of the conversion functions (see
sections IPI_Convert and IPI_Cast in Chapter 5, Tools Functions). The most common
image type has pixels coded using an 8-bit unsigned char , and is called IPI_PIXEL_U8
in IMAQ Vision. However, you can use any of the following predefined values:

• IPI_PIXEL_U8 —unsigned 8-bit

• IPI_PIXEL_I16 —signed 16-bit

• IPI_PIXEL_SGL —single floating point (32-bit) pixels

• IPI_PIXEL_RGB32 —32-bit color pixels

• IPI_PIXEL_COMPLEX —two single floating point (64-bit) pixels

border_size determines the width in pixels of the border created around an image
These pixels are used only by specific functions related to morphology or filtering.
Unless you use 7x7 or bigger morphology or convolution process, a border size of
sufficient for all IMAQ Vision functions.

Output
image_ptr returns the image structure reference that is supplied as input to all func
used by IMAQ Vision.

IPI_Dispose

IPIError = IPI_Dispose(IPIImageRef image);

Purpose
This function discards an image and reallocates the occupied space in memory. It
be used for each created image to free the memory allocated by IPI_Create().

Image Type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

Input
image is the image to be disposed.
IMAQ Vision for LabWindows/CVI 3-2 © National Instruments Corporation

Chapter 3 Management Functions

d.
IPI_SetErrorMode

IPIError = IPI_SetErrorMode (IPIErrorMode mode);

Purpose
This function sets up the IMAQ Vision behavior when an error occurs.

Input
mode indicates your selected error mode:

• IPI_ERRORMODE_ALERT—alert dialog (default as startup)

• IPI_ERRORMODE_IGNORE—no alert dialog

IPI_GetErrorMode

IPIErrorMode = IPI_GetErrorMode(void);

Purpose
This function returns the current error mode. The error mode is programmed using
IPI_SetErrorMode .

IPI_GetLastError

IPIError = IPI_GetLastError(char *procName);

Purpose
This function returns the last error recorded using IPI_ProcessError() . After reading,
the error is cleared.

Input
procName is the name of the IMAQ Vision function where the last error has occurre
© National Instruments Corporation 3-3 IMAQ Vision for LabWindows/CVI

Chapter 3 Management Functions

r

 the
IPI_ProcessError

IPIError = IPI_ProcessError (char *procName, IPIError error);

Purpose
This function is called internally by every IMAQ Vision function to record errors.
IPI_SetErrorMode() determines the behavior of this function (for example, whethe
a warning dialog appears).

Input
procName is the C string containing the calling function name. This name appears in
error dialog.

error is the error code to record.

IPI_CloseSys

IPIError = IPI_CloseSys(void);

Purpose
This function clears the IMAQ Vision memory subsystem. It disposes of memory
allocated by IMAQ Vision and returns it to the initial environment.
IMAQ Vision for LabWindows/CVI 3-4 © National Instruments Corporation

© National Instruments Corporation 4-1 IMAQ Vision
Chapter

4
Display and File Functions
ry
 are

 the
ed

ion
and
asic

s
d

ws
ows

ws.
ese
cts

ge

 can
e

ed

e
This chapter describes the IMAQ Vision display and file functions.

Display
Controlling image visualization is of primary importance in an image
application. Be aware that image processing and image visualization
distinct and separate elements. Image visualization deals only with
presentation of image data to you and how you work with the visualiz
images. Notice that a typical imagery application has many more
images than image windows.

Because people have different imagery needs and skills, IMAQ Vis
has a full set of functions that make it very easy to display images
to manage image windows. The novice user can easily access the b
IPI_WindDraw() functions while OEMs and other professional user
can create imagery applications containing sophisticated display an
control capabilities.

With the basic functions, you can display the images in image windo
and position, open, and close them on the screen. These image wind
can be resized and you can place scroll bars in these image windo
You can also program when to display the image data. Notice that th
image windows are based on LabWindows panels and canvas obje
that appear as a special subset. Only IMAQ Vision functions mana
these windows.

The other features allow you to manage user interaction on image
windows, including drawing shapes and selecting tools. These tools
be used to physically access the image data visualized in the imag
window. They include points, lines, rectangles, ovals, freehand,
multi-segment lines, and free objects. You can convert data access
with these tools into a region of interest or ROI. The functions also
regulate user interaction in the IMAQ Vision image windows and th
events that occur in those image windows.
 for LabWindows/CVI

Chapter 4 Display and File Functions

 from

dd

 the

.
alue
With this library, you can complete the following tasks:

• manage a tools windows (WindTools)

• select a region tool for defining a region of interest (ROI)

• manage a standard palette of display tools

• get both the events generated by a user and the associated data
an image window

Note: The display functions use parts of the LabWindows toolbox. You must a
the toolbox.obj in your LabWindows project.

Display Basics
The following functions control the basics of image display.

IPI WindDraw

IPIError = IPI_WindDraw(IPIImageRef image, int window_number, char

*window_title, int resize_window);

Purpose
This function displays an image in an image window. The image window appears
automatically when the function executes.

By using an 8-bit image buffer (Tmp), this function displays 16-bit and floating point
images. This 8-bit image buffer is calculated as a function of the dynamic range from
image source. The function automatically calculates the minimum value (Min), the
maximum value (Max) and then the following formula is applied to each pixel:

Tmp(x, y) = [Source(x, y) – Min] * 255 / (Max – Min)

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

Input
image indicates the image to display.

window_number (0..15) indicates the image window where the image is displayed
Up to 16 windows can be displayed simultaneously. Each window is labeled with a v
ranging from 0 to 15. Only the image window indicated in image is affected by the
function.

IMAQ Vision for LabWindows/CVI 4-2 © National Instruments Corporation

Chapter 4 Display and File Functions

ow

he

ed,

gers
olor
reen,
window_title is the image window name. If the string is not empty, the image wind
automatically takes that name. The default name for the image window is
Image #<Window Number> .

resize_window indicates if you want to automatically resize the image window to fit t
image size. With this, you do not have to know the size of a source image prior to
displaying it.

IPI_WSetPalette

IPIError = IPI_WSetPalette(int window_number, IPIPalette palette,

int color_table[]);

Purpose
This function sets a color palette to an image window.

Input
window_number (0..15) uses a number from 0 to 15 to indicate the image window
to use.

palette indicates one of the five predefined palettes or a user color table.

• IPI_PLT_GRAY —gray. Gray scale is the default palette. The color tables for the r
green, and blue planes are identical.

• IPI_PLT_BINARY —binary palette is designed especially for binary images

• IPI_PLT_GRADIENT —gradient palette

• IPI_PLT_RAINBOW—rainbow palette

• IPI_PLT_TEMPERATURE—temperature palette

• IPI_PLT_USER —user palette

color_table is the address of your color table. If used, this table contains 256 inte
specifying the RGB color corresponding to the 256 possible pixel values. A specific c
is the result of a value between 0 and 255 for each of the three color planes: red, g
and blue. If the three planes have the identical values, a shade of gray between
(0,0,0) = black and (255,255,255) = white results.
© National Instruments Corporation 4-3 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

er

or
IPI_SetWindowAttributes

IPIError = IPI_SetWindowAttribute(int window_number, int

window_attribute, ...);

Purpose
This function changes an attribute of one image window.

Input
window_number (0..15) indicates the image window to use. It is indicated by a numb
from 0 to 15.

window_attribute is the attribute value to set. This can be one of the standard
LabWindows attributes used by IMAQ Vision for image windows or an IMAQ Vision f
LabWindows/CVI specific attribute. Following are the standard attributes:

• ATTR_VISIBLE —visible

• ATTR_LEFT—left

• ATTR_TOP—top

• ATTR_WIDTH—width

• ATTR_HEIGHT—height

• ATTR_TITLEBAR_VISIBLE —title bar visible

• ATTR_TITLE—title

• ATTR_SCROLL_BARS—scroll bars

• ATTR_HSCROLL_OFFSET—horizontal scroll bar offset

• ATTR_VSCROLL_OFFSET—vertical scroll bar offset

• ATTR_CAN_MAXIMIZE—can maximize

• ATTR_CAN_MINIMIZE—can minimize

• ATTR_CLOSE_ITEM_VISIBLE—close item visible

• ATTR_FLOATING—floating window

• ATTR_MOVABLE—movable window

• ATTR_SIZABLE—sizable window

The IMAQ Vision for LabWindows/CVI specific attributes are the following:

• IPI_ATTR_VZOOM—Vertical zoom ratio

• IPI_ATTR_HZOOM—Horizontal zoom ratio
IMAQ Vision for LabWindows/CVI 4-4 © National Instruments Corporation

Chapter 4 Display and File Functions

e.

15.
• IPI_ATTR_VGRID —Vertical drawing grid

• IPI_ATTR_HGRID —Horizontal drawing grid

attribute_value contains the value corresponding to the attribute to change. With
ATTR_TITLE , this parameter is a char* . For all the other attributes, it is an integer valu

IPI_SetWindow2DAttributes

IPIError = IPI_SetWindow2DAttributes(int window_number, int

window_2D_attribute, int V_attribute_value, int H_attribute_value);

Purpose
This function changes the attribute of the two axes of the image window.

Input
window_number (0..15) indicates the image window to use by a number from 0 to

window_2D_attribute is one of the following predefined 2D attributes:

• IPI_ATTR_TOP_AND_LEFT—top and left

• IPI_ATTR_HEIGHT_AND_WIDTH—height and width

• IPI_ATTR_VH_SCROLL_OFFSET—Vertical and Horizontal scroll bar offset

• IPI_ATTR_VH_ZOOM—Vertical and Horizontal zoom ratio

• IPI_ATTR_VH_GRID —Vertical and Horizontal drawing grid

V_attribute_value is the vertical attribute value.

H_attribute_value is the horizontal attribute value.

IPI_GetWindowAttribute

IPIError = IPI_GetWindowAttribute(int window_number, int

window_attribute, void *attribute_value);

Purpose
This function reads image window attributes.
© National Instruments Corporation 4-5 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

15.

s
rd

e
Input
window_number (0..15) indicates the image window to use by a number from 0 to

window_attribute is the attribute value to set. This can be one of the standard
LabWindows attributes used by IMAQ Vision for LabWindows/CVI for image window
or an IMAQ Vision for LabWindows/CVI specific attribute. Following are the standa
attributes:

• ATTR_VISIBLE —visible

• ATTR_LEFT—left

• ATTR_TOP—top

• ATTR_WIDTH—width

• ATTR_HEIGHT—height

• ATTR_TITLEBAR_VISIBLE —title bar visible

• ATTR_TITLE—title

• ATTR_SCROLL_BARS—scroll bars

• ATTR_HSCROLL_OFFSET—horizontal scroll bar offset

• ATTR_VSCROLL_OFFSET—vertical scroll bar offset

• ATTR_CAN_MAXIMIZE—can maximize

• ATTR_CAN_MINIMIZE—can minimize

• ATTR_CLOSE_ITEM_VISIBLE—close item visible

• ATTR_FLOATING—floating window

• ATTR_MOVABLE—movable window

• ATTR_SIZABLE—sizable window

The IMAQ Vision for LabWindows/CVI specific attributes are the following:

• IPI_ATTR_VZOOM—Vertical zoom ratio

• IPI_ATTR_HZOOM—Horizontal zoom ratio

• IPI_ATTR_VGRID —Vertical drawing grid

• IPI_ATTR_HGRID —Horizontal drawing grid

Output
attribute_value returns the value corresponding to the attribute. With the attribut
ATTR_TITLE, this parameters is a char* . For all the other attributes the value is an
integer.
IMAQ Vision for LabWindows/CVI 4-6 © National Instruments Corporation

Chapter 4 Display and File Functions

er

ry for
IPI_GetWindow2DAttributes

IPIError = IPI_GetWindow2DAttributes (int window_number, int

window_2D_attribute, int *V_attribute_value, int

*H_attribute_value);

Purpose
This function reads 2D window attributes.

Input
window_number (0..15) indicates the image window to use. It is indicated by a numb
from 0 to 15.

window_2D_attribute is one of the following predefined 2D attributes:

• IPI_ATTR_TOP_AND_LEFT—top and left

• IPI_ATTR_HEIGHT_AND_WIDTH—height and width

• IPI_ATTR_VH_SCROLL_OFFSET—vertical and horizontal scroll bar offset

• IPI_ATTR_VH_ZOOM—vertical and horizontal zoom ratio

• IPI_ATTR_VH_GRID —vertical and horizontal drawing grid

Output
V_attribute_value points to the vertical attribute value.

H_attribute_value points to the horizontal attribute value.

IPI_WindClose

IPIError = IPI_WindClose (int window_number, int

close_all_windows);

Purpose
This function closes an image window. It also destroys the space reserved in memo
the image window.
© National Instruments Corporation 4-7 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

lue

he
ols.

e
Input
window_number (0..15) indicates the image window to close by a number from
0 to 15.

close_all_windows indicates that all the image windows are to be closed, if this va
is set to TRUE. If this value is FALSE, only the indicated window is closed.

Display Tools
The following functions control display tools.

IPI_WindToolsSetup

IPIError = IPI_WindToolsSetup(int icon_per_line, IPITool

tool_list[], int tool_icon_count, int draw_coordinates);

Purpose
The WindTools palette is a floating palette where you find tools to create a ROI in t
image. This function must be called prior to any other function related to the WindTo
This function controls the configuration and the appearance of the WindTools.

Note: You can read the coordinates of a selected region with
IPI_GetLastEvent , IPI_GetLastWEvent or by installing a callback
procedure using IPI_InstallWCallback() .

The regions tools can be altered by the following keyboard keys:

• <Shift>—forces a straight line when using the line regions tool, a square when using
the rectangle regions tool, a circle when using the oval regions tool, or reduces the
zoom factor when using the zoom tool

• <Shift> before a <click>—adds a ROI

• <Control>—moves a region when you click on the region while pressing
the <Control> key

• <Control> before a <click>—displaces a ROI

Input
icon_per_line selects the number of visible tool icons per line. This parameter
configures the width of the tools window. The number of lines are determined by th
number of remaining available icons. The value 4 is recommended.

IMAQ Vision for LabWindows/CVI 4-8 © National Instruments Corporation

Chapter 4 Display and File Functions

ing

re)

.

he

tes
tool_list is a pointer to an array specifying the tool icons to show. Use
IPI_WT_STDLIST if you want to use the standard full tool icons list. If you want to
configure the tool icons list yourself, you can create your own array putting the follow
values in the order you want:

• IPI_WT_POINT —point regions tool. You can select a pixel in the image.

• IPI_WT_LINE —line regions tool. You can draw a line in the image.

• IPI_WT_RECTANGLE—rectangle regions tool. You can draw a rectangle (or squa
in the image.

• IPI_WT_OVAL—oval regions tool. You can draw an oval (or circle) in the image

• IPI_WT_POLYGON—polygon regions tool. You can draw a polygon in the image.

• IPI_WT_FREEHAND—freehand regions tool. You can draw a freehand region in t
image.

• IPI_WT_ZOOM—zoom. You can zoom in or zoom out in an image.

• IPI_WT_BROKENLINE—broken line

• IPI_WT_FREE—free hand line

tool_icon_count indicates the number of used icons. Use IPI_ALL_WTOOLS if you
want to configure the WindTools with all existing tool icons.

draw_coordinates indicates if the active pixel coordinates and the drawing coordina
are shown.

IPI_SetWindToolsAttribute

IPIError = IPI_SetWindToolsAttribute(int window_attribute, ...);

Purpose
This function sets the tool attributes.

Input
window_attribute indicates one of the following predefined attributes:

• ATTR_VISIBLE —visible

• ATTR_LEFT—left

• ATTR_TOP—top

• ATTR_TITLEBAR_VISIBLE —title bar visible

• ATTR_TITLE—title

• ATTR_CLOSE_ITEM_VISIBLE—close item visible
© National Instruments Corporation 4-9 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

e.

e.
• ATTR_FLOATING—floating window

• ATTR_MOVABLE—movable

attribute_value contains the value corresponding to the attribute to change. With
ATTR_TITLE, this parameter is a char* . For all the other attributes, it is an integer valu

IPI_GetWindToolsAttribute

IPIError = IPI_GetWindToolsAttribute(int window_attribute, void

*attribute_value);

Purpose
This function reads all the tool attributes.

Input
window_attribute indicates one of the following predefined attributes:

• ATTR_VISIBLE —visible

• ATTR_LEFT—left

• ATTR_TOP—top

• ATTR_TITLEBAR_VISIBLE —title bar visible

• ATTR_TITLE—title

• ATTR_CLOSE_ITEM_VISIBLE—close item visible

• ATTR_FLOATING—floating window

• ATTR_MOVABLE—movable

Output
attribute_value contains the current value of the selected attribute.

IPI_SetActiveTool

IPIError = IPI_SetActiveTool(IPITool tool);

Purpose
This function selects the current active tool on the image window. If the WindTools
palette is visible, the selected tool becomes the active icon in the WindTools palett

Note: Only one of the tools passed in the tool_list parameter when calling
IPI_WindToolsSetup() can be chosen.

IMAQ Vision for LabWindows/CVI 4-10 © National Instruments Corporation

Chapter 4 Display and File Functions

e

re)

.

he
Input
tool must be one of the following values:

• IPI_WT_NOSELECTION—no tool selected. You are unable to draw any ROI in th
image.

• IPI_WT_POINT —point (click) regions tool. You can select a pixel in the image.

• IPI_WT_LINE —line regions tool. You can draw a line in the image.

• IPI_WT_RECTANGLE—rectangle regions tool. You can draw a rectangle (or squa
in the image.

• IPI_WT_OVAL—oval regions tool. You can draw an oval (or circle) in the image

• IPI_WT_POLYGON—polygon regions tool. You can draw a polygon in the image.

• IPI_WT_FREEHAND—freehand regions tool. You can draw a freehand region in t
image.

• IPI_WT_ZOOM—zoom. You can zoom in or zoom out in an image.

• IPI_WT_BROKENLINE—broken line

• IPI_WT_FREE—free hand line

IPI_GetActiveTool

IPIError = IPI_GetActiveTool (IPITool *active_tool);

Purpose
This function returns the currently selected tool.

Output
active_tool contains the current active tool.

IPI_WindToolsClose

IPIError = IPI_WindToolsClose (void);

Purpose
This function closes the tool palette window.

It works in the same way as IPI_WindClose , which closes image windows. This
function also destroys the space reserved in memory for the tool palette window.
© National Instruments Corporation 4-11 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

a
k
IPI_InstallWCallback

IPIError = IPI_InstallWCallback(int window_number, IPIWCallbackFunc

Callback_Function,void *Callback_Data);

Purpose
This function connects a callback function receiving all the user and system events
coming from an image window.

Input
window_number indicates the image window number on which you want to install a
callback function. Use the predefined value IPI_ALL to connect a common callback
function associated with all events coming from all image windows.

Callback_Function is the address of the callback function you want to install. You
must declare the callback function using the following prototype:

void myWindCallBack(IPIWindEventRecord *event_record, void

*Callback_Data);

Callback_Data is a user-defined data value you retrieve in your callback function.

IPI_RemoveWCallback

void IPI_RemoveWCallback (int window_number);

Purpose
This function deletes a window callback function.

Input
window_number indicates the image window number on which you want to remove
callback function. The predefined value IPI_ALL removes the current common callbac
function.

IPI_GetLastEvent

int IPI_GetLastEvent(IPIWindEventRecord *event_record);

Purpose
This function retrieves the last event on all image windows.
IMAQ Vision for LabWindows/CVI 4-12 © National Instruments Corporation

Chapter 4 Display and File Functions

tent
Output
event_record is a structure filled with the following information:

• windowNumber—image window receiving the event

• event—event type

• usedTool—tool used to generate the event

• coordinates[4]—array containing draw coordinates values

• otherData[4]—other data values

event_record returns the occurred event. Table 4-1 below shows the coordinate con
according to the type of event and the tool used.

Table 4-1. Event/Tool Coordinates

Event Tool Coordinates Other Parameters

IPI_EVT_NOEVENT n/a not filled not filled

IPI_EVT_CLICK IPI_WT_POINT [0,1] = click point [0,1,2] = pixel
value(*)

IPI_WT_ZOOM [0,1] = click point

[2,3] = image center

[0] = zoom factor

IPI_EVT_DRAW IPI_WT_LINE [0,1] = starting point

[2,3] = ending point

[0,1] = width and
height

[2] = vertical
segment angle

[3] = segment
length

IPI_WT_RECTANGLE [0,1] = starting point

[2,3] = ending point

[0,1] = width and
height

IPI_WT_OVAL [0,1] = left/top
bounding point

[2,3] = right/bottom
bounding point

[0,1] = width and
height
© National Instruments Corporation 4-13 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions
(*) Pixel values are stored in the first element of the array for 8-bit, 16-bit, and floating point images.

The RGB values of color images are stored in the order [0,1,2].

The real and imaginary values of a complex image are stored in the order [0,1].

IPI_EVT_DRAW
(continued)

IPI_WT_POLYGON [0,1] = left/top
bounding point

[2,3] = right/bottom
bounding point

[0,1] = width and
height

IPI_WT_FREEHAND [0,1] = left/top
bounding point

[2,3] = right/bottom
bounding point

[0,1] = width and
height

IPI_WT_BROKENLINE [0,1] = left/top
bounding point

[2,3] = right/bottom
bounding point

[0,1] = width and
height

IPI_WT_FREE [0,1] = left/top
bounding point

[2,3] = right/bottom
bounding point

[0,1] = width and
height

IPI_EVT_MOVE n/a [0,1] = position of
image window

empty

IPI_EVT_SIZE n/a [0,1] = width and
height of image
window

empty

IPI_EVT_SCROLL n/a [0,1] = center
position of image

empty

IPI_EVT_ACTIVATE n/a empty empty

IPI_EVT_CLOSE n/a empty empty

Table 4-1. Event/Tool Coordinates (Continued)

Event Tool Coordinates Other Parameters
IMAQ Vision for LabWindows/CVI 4-14 © National Instruments Corporation

Chapter 4 Display and File Functions

15.

ysis
s

he
dow

e
IPI_GetLastWEvent

int IPI_GetLastWEvent (int window_number, IPIWindEventRecord

*event_record);

Purpose
This function reads the last event on a window.

Input
window_number (0..15) indicates the image window used. It is a number from 0 to

Output
event_record is a structure filled with the following information:

• windowNumber—image window receiving the event

• event—event type

• usedTool—tool used to generate the event

• coordinates[4]—array containing draw coordinates values

• otherData[4]—other data values

event_record returns the occurred event. Table 4-1, Event/Tool Coordinates, shows the
coordinate content according to the type of event and the tool used.

Regions of Interest
Regions of interest can be used to focus your processing and anal
on a part of an image. A ROI can be traced using standard contour
(oval, rectangle, and so on) or freehand contours. The IMAQ Vision
user has the following options:

• associate a ROI with an image window

• extract a ROI associated with an image window

• erase the current ROI from an image window

• transform a ROI into an image mask

• transform an image mask into a ROI

An image mask that is converted into a ROI must have an offset. T
image mask uses the offset to associate the ROI with an image win
that contains image data. In other words, the offset places a newly
created ROI into the space of another image. The offset defines th
© National Instruments Corporation 4-15 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

on)
upper left corner coordinates (x,y) for the bounding rectangle belonging
to the ROI. The default value is (0,0).

The ROI descriptor is described as follows:

• Bounding rectangle for a ROI

• Regions list:

– contour identifier (exterior or interior contour)

– contour type (point, line, rectangle, oval, freehand, and so

– list of points (x,y) describing the contour

IPI_SetWROI

IPIError = IPI_SetWROI(int window_number, IPIROIPtr ROI);

Purpose
This function associates a ROI with an image window.

Input
window_number (0..15) indicates the image window to use. It is a number from
0 to 15.

ROI is the address of an array describing a ROI.

IPI_GetWROI

IPIError = IPI_GetWROI(int window_number, IPIROIPtr *ROI);

Purpose
This function reads a ROI associated with an image window.

Input
window_number (0..15) indicates the image window to use. It is a number from
0 to 15.

Output
ROI returns the address of an array describing the ROI. The ROI structure and
substructure are allocated (or reallocated) within this function. This ROI must be deleted
using IPI_FreeROI() .
IMAQ Vision for LabWindows/CVI 4-16 © National Instruments Corporation

Chapter 4 Display and File Functions

ne
e
s

nd

ing

 is
IPI_ClearWROI

IPIError = IPI_ClearWROI (int window_number);

Purpose
This function erases the current ROI from an image window.

Note: It is also possible to erase a region of interest in an image window by
pressing the backspace key when the current image window is active.

Input
window_number (0..15) indicates the image window to use. It is a number from
0 to 15.

IPI_ROIToMask

IPIError = IPI_ROIToMask (IPIImageRef image, IPIImageRef

size_model_image, IPIROIPtr ROI, int filling_value);

Purpose
This function transforms a ROI into a mask.

Note: There are two ways to use this function. The simplest technique is to defi
the size_model_image . In this case you can use the source image, wher
the image ROI was drawn, as a template for the final destination image. A
a result, the output image automatically acquires the size of the image a
location of the region of interest as found in the original source image.

However, you do not have to specify a size_model_image . In this case the ROI requires
an offset which is automatically determined from the upper left corner of the bound
rectangle described by the ROI. The bounding rectangle information is a part of theROI
structure.

Image type: IPI_PIXEL_U8

Input
image is the destination image where the mask is created.

size_model_image serves as a template for the destination image where the mask
placed. image takes the characteristics of size_model_image (size and location of ROI)
when size_model_image is given. However, the size_model_image is optional. This
can be of any image type used by IMAQ Vision.

© National Instruments Corporation 4-17 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

ue.

y

the

s.
ROI is the address of an array describing the ROI.

filling_value is the pixel value of the mask. All pixels inside the ROI take this val

IPI_MaskToROI

IPIError = IPI_MaskToROI (IPIImageRef image, int

external_edges_only, int max_number_of_points, IPIROIPtr *ROI, int

*too_much_points);

Purpose
This function transforms an image mask into a ROI.

Image type: IPI_PIXEL_U8

Input
image is the image containing the image mask that is transformed into a ROI.

external_edges_only indicates if only the external edges are transformed.

max_number_of_points is the maximum size of the definition of a ROI. This arbitrar
value provides a way to limit memory usage within this function.

Output
ROI returns the address of the array describing the ROI. The ROI structure and
substructure are allocated (or reallocated) within this function. This ROI must be
disposed using IPI_FreeROI() .

too_much_points returns TRUE if there are too many points defining the contour of
ROI.

IPI_FreeROI

void IPI_FreeROI(IPIROIPtr ROI);

Purpose
This function deallocates memory space used for a ROI structure and substructure

Input
ROI is the ROI previously returned by the IPI_GetWROI() or IPI_MaskToROI()
functions.
IMAQ Vision for LabWindows/CVI 4-18 © National Instruments Corporation

Chapter 4 Display and File Functions

 to

,

. If

e
e
Files
The following functions control reading and writing images from and
disk files.

IPI_ReadFile

IPIError = IPI_ReadFile(IPIImageRef image, char file_name[], int

load_color_table, int color_table[], int *nb_of_colors);

Purpose
This function reads an image file. The file format can be any standard format: AIPD
TIFF, or BMP. The read pixels automatically convert to the image type of the input
image.

Image type: IPI_PIXEL_U8 , I16 , SGL, COMPLEX, RGB32

Input
image is the image filled with pixels read from the file. The image is resized
automatically according to the file header information.

file_name is the complete path name (Drive»Directory»File) of the file to be loaded.

load_color_table determines if you want to load the color table present in the file
loaded, this table is read and made available at the color_table output.

Output
color_table contains the color table (R,G,B) read from the file if you pass the valu
TRUE at the load_color_table input. To load a color table, you have to allocate th
space corresponding to 256 integers (1024 bytes) and use this pointer as color_table .

nb_of_colors is the number of colors contained in the color_table .
© National Instruments Corporation 4-19 IMAQ Vision for LabWindows/CVI

Chapter 4 Display and File Functions

s).

nly
IPI_WriteFile

IPIError = IPI_WriteFile (IPIImageRef image, char file_name[],

IPIFileFormat format, int color_table[], int nb_of_colors);

Purpose
This function writes an image to a file.

Image type: IPI_PIXEL_U8 , I16 , SGL, COMPLEX, RGB32

Input
image is the image to be written.

file_name is the complete path name (Drive»Directory»File) of the file to be written.

format indicates the standard file format to be created.

• IPI_FILE_AIPD creates an AIPD file (the only file format that uses all image type

• IPI_FILE_BMP creates a BMP file, that uses 8-bit or color 24 bit.

• IPI_FILE_TIFF creates a TIFF file, that uses 8-bit or color 24 bit.

color_table contains the color table to include in the file (BMP and TIFF only).

nb_of_colors is the number of colors contained in the color_table .

IPI_GetFileInfo

IPIError = IPI_GetFileInfo(char file_name[], IPIFileInfo

*file_info);

Purpose
This function gets information on the contents of a file. This information is supplied o
if the file has a standard file format (AIPD, BMP, TIFF).

Input
file_name is the complete path name (Drive»Directory»File) of the file.
IMAQ Vision for LabWindows/CVI 4-20 © National Instruments Corporation

Chapter 4 Display and File Functions

es,

s

Output
file_info is a pointer to a structure that contains the following information:

• fileFormat indicates the file type that was read. It can be any of the following:

– IPI_FILE_UNKNOWN

– IPI_FILE_AIPD

– IPI_FILE_BMP

– IPI_FILE_TIFF

• bitsPerPixel indicates how many bits are used per pixel

• nbPlanes indicates the number of planes in the image (1 for monochrome imag
2 for complex images, 3 for color images)

• width is the horizontal size defined in the header of standard image file format

• height is the vertical size defined in the header of standard image file formats
© National Instruments Corporation 4-21 IMAQ Vision for LabWindows/CVI

© National Instruments Corporation 5-1 IMAQ Vision
Chapter

5
Tools Functions
 so
ge
ert
This chapter describes the IMAQ Vision tools functions.

Tools Image
The following functions are a set of diverse functions for the
manipulation of images (copy, reduction, expansion, extraction, and
on). Also included are functions that get all information about the ima
attributes and pixel mapping, operate on individual pixels, and conv
images to arrays and vice versa.

IPI_GetImageInfo

IPIError = IPI_GetImageInfo (IPIImageRef image, IPIImageInfo

*image_info);

Purpose
This function produces information about the image size, calibration, and offset.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

Input
image is the image on which you get information.

Output
image_info is a pointer to a structure that contains the following information:

• width—X image size

• height—Y image size

• pixelType—type of pixel in the image

• pixelSize—size of each pixel in bytes

• rawPixels—offset to next line in pixels

• rawBytes—offset to next line in bytes

• border—border size
 for LabWindows/CVI

Chapter 5 Tools Functions

e
so
• pixelSpace—amount of memory used for the pixels in bytes

• xOffset—X start coordinate when used as a mask

• yOffset—Y start coordinate when used as a mask

• unit—representation unit

• xCalib—X calibration ratio

• yCalib—Y calibration ratio

• firstPixelAddress—address of the pixel (0,0)

IPI_SetImageSize

IPIError = IPI_SetImageSize (IPIImageRef image, int width, int

height);

Purpose
This function modifies the resolution of an image.

Note: This function reuses the memory space previously occupied by the imag
pixels. It does not transfer the original image into a new memory space
the original image is lost.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

Input
image is the image that is resized.

width is the new number of pixels per line.

height is the new number of pixels per column.

IPI_SetImageCalibration

IPIError = IPI_SetImageCalibration (IPIImageRef image, IPIImageUnit

unit, float x_axis_ratio, float y_axis_ratio);

Purpose
This function sets the calibration scale for an image.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

IMAQ Vision for LabWindows/CVI 5-2 © National Instruments Corporation

Chapter 5 Tools Functions

lues:

e
Input
image is the image that receives the new calibration.

unit is the measure unit associated with the image. You can select the following va

• IPI_UNIT_UNDEF —undefined

• IPI_UNIT_ANGSTROM—angstr

• IPI_UNIT_MICROMETER—micrometer

• IPI_UNIT_MILLIMETER —millimeter

• IPI_UNIT_CENTIMETER —centimeter

• IPI_UNIT_METER —meter

• IPI_UNIT_KILOMETER —kilometer

• IPI_UNIT_MICROINCH —microinch

• IPI_UNIT_INCH —inch

• IPI_UNIT_FOOT —foot

• IPI_UNIT_NAUTICMILE —nautic mile

• IPI_UNIT_GROUNDMILE—ground mile

x_axis_ratio indicates the horizontal distance separating two adjacent pixels in th
indicated unit .

y_axis_ratio indicates the vertical distance separating two adjacent pixels in the
indicated unit .

IPI_SetImageOffset

IPIError = IPI_SetImageOffset(IPIImageRef image, int x_offset, int

y_offset);

Purpose
This function defines the position of an image mask in relation to the origin of the
coordinate system (0,0).

Image type: IPI_PIXEL_U8
© National Instruments Corporation 5-3 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

 is

 if

 to

ontal
Input
image is the image for which you set the offset.

x_offset indicates the new horizontal offset of the image.

y_offset indicates the new vertical offset of the image.

IPI_Expand

IPIError = IPI_Expand (IPIImageRef source_image, IPIImageRef

dest_image, int x_duplication, int y_duplication, Rect rectangle);

Purpose
This function expands an image or part of an image by adjusting the horizontal and
vertical resolution.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32

Input
source _image is the image to expand.

dest _image is the resulting image.

x_duplication indicates the number of pixel duplications per column. The column
copied if the default value (1) is used.

y_duplication indicates the number of pixel duplications per line. The row is copied
the default value (1) is used.

rectangle is a Rect structure containing the coordinates and the size of the region
expand.

IPI_Extract

IPIError = IPI_Extract(IPIImageRef source_image, IPIImageRef

dest_image, int x_subsample, int y_subsample, Rect rectangle);

Purpose
This function extracts (reduces) an image or part of an image by adjusting the horiz
and vertical resolution.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32
IMAQ Vision for LabWindows/CVI 5-4 © National Instruments Corporation

Chapter 5 Tools Functions

 (the

the

n to

 to
Input
source_image is the source image to extract.

dest_image is the resulting image.

x_subsample is the vertical sampling step and defines the columns to be extracted
horizontal reduction ratio). For example, with an x_subsample equal to 3, one out of
every three columns are extracted from the source_image into the dest_image . Each
column is extracted if the default value (1) is used.

y_subsample is the horizontal sampling step and defines the lines to be extracted (
vertical reduction ratio). Each row is extracted if the default value (1) is used.

rectangle is a Rect structure containing the coordinates and the sizes of the regio
extract.

IPI_Resample

IPIError = IPI_Resample(IPIImageRef source_image, IPIImageRef

dest_image, int x_new_size, int y_new_size, Rect rectangle);

Purpose
This function resizes the original image to a user-defined resolution. It is useful for
displaying a reduced or enlarged image (that is, zoom in/zoom out).

Image type: IPI_PIXEL_U8 , RGB32

Input
source_image is the source image to resample.

dest_image is the resulting image.

x_new_size is the final horizontal size of the image.

y_new_size is the final vertical size of the image.

rectangle is a Rect structure containing the coordinates and the size of the region
extract and resample.
© National Instruments Corporation 5-5 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

f the
ssing

 the
n

g
IPI_Copy

IPIError = IPI_Copy(IPIImageRef source_image, IPIImageRef

dest_image);

Purpose
This function copies the attributes and the pixels of one image into another image o
same type. It is used for keeping an original copy of an image (that is, before proce
an image).

Note: The images to be copied must be of the same type. This function copies
complete definition of the source image and its pixel data to the destinatio
image. It also modifies the border of the destination image so it will be
equal to the source image.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

Input
source_image is the source image to copy.

dest_image is the resulting image.

IPI_ImageToImage

IPIError = IPI_ImageToImage (IPIImageRef source_image, IPIImageRef

dest_image, int destination_top, int destination_left);

Purpose
This function copies a small image into another larger image. It is useful for makin
thumbnail sketches from multiple miniature images.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32

Input
source_image is the source image to copy.

dest_image is the resulting image.

destination_top and destination_left specify the dest_image pixel coordinates
where the source _image is copied to.

IMAQ Vision for LabWindows/CVI 5-6 © National Instruments Corporation

Chapter 5 Tools Functions
IPI_GetPixelValue

IPIError = IPI_GetPixelValue (IPIImageRef image, int x_coordinate,

int y_coordinate, float *pixel_value);

Purpose
This function reads or extracts a pixel value from an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image used for this operation.

x_coordinate is the horizontal coordinate of the pixel to read.

y_coordinate is the vertical coordinate of the pixel to read.

Output
pixel_value returns the pixel value.

IPI_SetPixelValue

IPIError = IPI_SetPixelValue(IPIImageRef image, int x_coordinate,

int y_coordinate, float pixel_value);

Purpose
This function changes the pixel value in an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image to modify.

x_coordinate is the horizontal coordinate of the pixel to modify.

y_coordinate is the vertical coordinate of the pixel to modify.

pixel_value contains the replacement pixel value.
© National Instruments Corporation 5-7 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

rray,

tain
IPI_GetRowCol

IPIError = IPI_GetRowCol (IPIImageRef image, int row_or_column, int

row_col_index, int array_format, void *array, int *nb_of_elements);

Purpose
This function reads either a row or a column of pixel values from an image into an a
and returns the number of elements in this array.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image used for this operation.

row_or_column specifies operation on a row or column. IPI_ROW indicates an operation
on a row. IPI_COLUMN indicates an operation on a column.

row_col_index is the row or column number to be extracted.

array_format indicates the data type of the array using one of the following
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

Output
array is the pointer to the pixel array allocated by you. It must be big enough to con
all elements.

nb_of_elements returns the number of elements copied into the array.
IMAQ Vision for LabWindows/CVI 5-8 © National Instruments Corporation

Chapter 5 Tools Functions

 An

re
IPI_SetRowCol

IPIError = IPI_SetRowCol (IPIImageRef image, int row_or_column, int

row_col_index, int array_format, void *array, int nb_of_elements);

Purpose
This function changes the values of pixels in either a row or a column in an image.
array that you define contains the new values of the pixels.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image to modify.

row_or_column specifies operation on a row or column. IPI_ROW indicates an operation
on a row. IPI_COLUMN indicates an operation on a column.

row_col_index is the row or column number to modify.

array_format indicates the data type of the array using one of the following
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

array defines the pointer to the pixel array containing the new pixel values which a
copied into the image.

nb_of_elements defines the number of elements in the array.
© National Instruments Corporation 5-9 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

ber

tain
IPI_GetLine

IPIError = IPI_GetLine (IPIImageRef image, Point start, Point end,

int array_format, void *array, int *nb_of_elements);

Purpose
This function reads a line of pixels from an image into an array and returns the num
of elements in this array.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image used for this operation.

start is the start point of the line read.

end is the end point of the line read.

array_format indicates the data type of the array using one of the following
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

Output
array is the pointer to the pixel array allocated by you. It must be big enough to con
all copied elements.

nb_of_elements returns the number of copied elements in the array.
IMAQ Vision for LabWindows/CVI 5-10 © National Instruments Corporation

Chapter 5 Tools Functions

new

re
IPI_SetLine

IPIError = IPI_SetLine(IPIImageRef image, Point start, Point end,

int array_format, void *array, int nb_of_elements);

Purpose
This function writes a line of pixel in an image. An array that you define contains the
values of the pixels.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image to modify.

start is the start point of the line to modify.

end is the end point of the line to modify.

array_format indicates the data type of the array using one of the following
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

Array defines the pointer to the pixel array containing the new pixel values which a
copied into the image.

nb_of_elements defines the number of elements in the array.
© National Instruments Corporation 5-11 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

gle

tain
IPI_ImageToArray

IPIError = IPI_ImageToArray (IPIImageRef image, Rect rectangle, int

array_format, void *array, int *array_x_size, int *array_y_size);

Purpose
This function extracts a pixel array from an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image used for this operation.

rectangle is a Rect structure containing the coordinates and the size of the rectan
to extract from the image.

array_format indicates the data type of the array using one of the following
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

Output
array is the pointer to the pixel array allocated by you. It must be big enough to con
all the copied elements.

array_x_size returns the horizontal number of copied elements in the array.

array_y_size returns the vertical number of copied elements in the array.
IMAQ Vision for LabWindows/CVI 5-12 © National Instruments Corporation

Chapter 5 Tools Functions

re
IPI_ArrayToImage

IPIError = IPI_ArrayToImage (IPIImageRef image, int array_format,

void *array, int array_x_size, int array_y_size);

Purpose
This function sets an image from a pixel array. The resulting image is resized to
array_x_size and array_y_size .

Note: The resulting image is cut to array_x_size and array_y_size .

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image to modify.

array_format indicates the data type of the array using one of the following
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

array defines the pointer of the pixel array containing the new pixel values which a
copied into the image.

array_x_size is the horizontal number of elements in the array.

array_y_size is the vertical number of elements in the array.

© National Instruments Corporation 5-13 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions
IPI_GetPixelAddress

IPIError = IPI_GetPixelAddress (IPIImageRef image, int

x_coordinate, int y_coordinate, IPIPixelPtr *pixel_address);

Purpose
This function returns a pixel address from an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image used for this operation.

x_coordinate is the horizontal coordinate of the pixel.

y_coordinate is the vertical coordinate of the pixel.

Output
pixel_address returns the address of the indicated pixel.

Tools Diverse
The following functions draw shapes into an image.

IPI_DrawLine

IPIError = IPI_DrawLine (IPIImageRef source_image, IPIImageRef

dest_image, Point point_1, Point point_2, IPIDrawMode draw_mode,

float gray_level);

Purpose
This function draws a line in an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the source image where the line is drawn.

dest_image is the resulting image.

point_1 and point_2 are the start point and the end point of the line.
IMAQ Vision for LabWindows/CVI 5-14 © National Instruments Corporation

Chapter 5 Tools Functions

s

gle

s
draw_mode defines how to draw the object. It can take the following values:

• IPI_DRAW_FRAME—frame. Draws the contour using the gray_level value.

• IPI_DRAW_PAINT —paint. Fills the shape using the gray_level value.

• IPI_INVERT_FRAME —invert frame. Uses the inverse of the pixel values when
drawing the contour.

• IPI_INVERT_PAINT —invert paint. Uses the inverse of the pixel values when
drawing the whole shape.

gray_level is the pixel value used for drawing. This value is not used in the mode
IPI_INVERT_FRAME or IPI_INVERT_PAINT .

IPI_DrawRect

IPIError = IPI_DrawRect (IPIImageRef source_image, IPIImageRef

dest_image, Rect rectangle, IPIDrawMode draw_mode, float

gray_level);

Purpose
This function draws a rectangle in an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the source image where the rectangle is drawn.

dest_image is the resulting image.

rectangle is a Rect structure containing the coordinates and the size of the rectan
to draw.

draw_mode defines how to draw the object. It can take the following values:

• IPI_DRAW_FRAME—frame. Draws the contour using the gray_level value.

• IPI_DRAW_PAINT —paint. Fills the shape using the gray_level value.

• IPI_INVERT_FRAME —invert frame. Uses the inverse of the pixel values when
drawing the contour.

• IPI_INVERT_PAINT —invert paint. Uses the inverse of the pixel values when
drawing the whole shape.

gray_level is the pixel value used for drawing. This value is not used in the mode
IPI_INVERT_FRAME or IPI_INVERT_PAINT .
© National Instruments Corporation 5-15 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

s
IPI_DrawOval

IPIError = IPI_DrawOval (IPIImageRef source_image, IPIImageRef

dest_image, Rect rectangle, IPIDrawMode draw_mode, float

gray_level);

Purpose
This function draws an oval in an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the source image where the oval is drawn.

dest_image is the resulting image.

rectangle is a Rect structure containing the coordinates and the size of the oval to
draw.

draw_mode defines how to draw the object. It can take the following values:

• IPI_DRAW_FRAME—frame. Draws the contour using the gray_level value.

• IPI_DRAW_PAINT —paint. Fills the shape using the gray_level value.

• IPI_INVERT_FRAME —invert frame. Uses the inverse of the pixel values when
drawing the contour.

• IPI_INVERT_PAINT —invert paint. Uses the inverse of the pixel values when
drawing the whole shape.

gray_level is the pixel value used for drawing. This value is not used in the mode
IPI_INVERT_FRAME or IPI_INVERT_PAINT .
IMAQ Vision for LabWindows/CVI 5-16 © National Instruments Corporation

Chapter 5 Tools Functions

 pixel
f the

found

.

d.

 or a

 in
IPI_MagicWand

IPIError = IPI_MagicWand (IPIImageRef source_image, IPIImageRef

dest_image, int x_coordinate, int y_coordinate, float tolerance,

int connectivity_8, float replacement_value);

Purpose
This function creates an image mask by extracting a region surrounding a reference
and using a positive and negative tolerance of intensity variation around the value o
reference pixel. The process searches for all neighboring pixels whose values are
within the tolerance of the reference value.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the image to transform.

dest_image is the resulting image.

x_coordinate and y_coordinate define the position of the point taken as reference

tolerance is the range of intensity variation for pixels.

connectivity_8 indicates the connectivity used to determine if a particle is selecte

The connectivity mode determines if an adjacent pixel belongs to the same particle
different particle. The possible values are:

• TRUE—The function detects particles in connectivity mode 8.

• FALSE—The function detects particles in connectivity mode 4.

replacement_value is the value that is assigned to pixels with the tolerance range
the destination image.
© National Instruments Corporation 5-17 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

,

pied.

, and

pied.

2768
Conversion
The following functions perform linear or nonlinear conversion from
one image type to another.

IPI_Convert

IPIError = IPI_Convert(IPIImageRef source_image, IPIImageRef

dest_image);

Purpose
This function converts the image type of source_image into the image type of
dest_image . The image type encoded by dest_image defines how the function converts
the image. The conversion rules are described below.

• U8 to I16 or SGL—pixel values are copied (0 to 255)

• U8 to RGB32—pixel values are copied into each of the three color planes R, G
and B

• I16 to U8—pixel values < 0 are set to 0. Pixel values between 0 and 255 are co
Pixel values >255 are set to 255.

• I16 to SGL—pixel values are copied (–32768 to 32767)

• I16 to RGB32—pixel values are copied into each of the three color planes R, G
B with the same conversion rule as I16 to U8

• SGL to U8—pixel values < 0 are set to 0. Pixel values between 0 and 255 are co
Pixel values >255 are forced to 255.

• SGL to I16—pixel values <–32768 are set to –32768. Pixel values between –3
and 32767 are copied. Pixel values >32767 are set to 32767.

• SGL to RGB32—same rule applies as I16 to RGB32

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

Input
source_image is the image to be converted.

dest_image is the image resulting from the conversion.
IMAQ Vision for LabWindows/CVI 5-18 © National Instruments Corporation

Chapter 5 Tools Functions

g
IPI_Cast

IPIError = IPI_Cast(IPIImageRef image, IPIPixelType pixel_type);

Purpose
This function changes the type of an image.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32, COMPLEX

Input
image is the image to be converted.

pixel_type determines which type the source image is converted to.

• IPI_PIXEL_U8 —unsigned 8-bit

• IPI_PIXEL_I16 —signed 16-bit

• IPI_PIXEL_SGL —single floating point (32-bit) pixels

• IPI_PIXEL_RGB32 —32-bit color pixels

• IPI_PIXEL_COMPLEX —two single floating point (64-bit) pixels

IPI_ConvertByLookup

IPIError = IPI_ConvertByLookup(IPIImageRef source_image,

IPIImageRef dest_image, int lookup_format, void *lookup_array, int

nb_of_lookup_elements);

Purpose
This function converts an image by using a lookup table which is encoded in floatin
point values.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the image to be converted.

dest_image is the image resulting from the conversion. The image type for dest_image
can be the following:

• IPI_PIXEL_SGL , IPI_PIXEL_I16 if source_image is of type IPI_PIXEL_U8

• IPI_PIXEL_SGL if source_image is of type IPI_PIXEL_I16
© National Instruments Corporation 5-19 IMAQ Vision for LabWindows/CVI

Chapter 5 Tools Functions

g

it
lookup_format indicates the data type of the lookup table using one of the followin
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

lookup_array is the reference of the array. It consists of up to 256 elements if
source_image is of type IPI_PIXEL_U8 or up to 65,536 elements if the source_image
is of type IPI_PIXEL_I16 . This array is completed with values equal to the index if
has less elements than the maximum needed by the image type in source_image .

nb_of_lookup_elements indicates the number of elements in the lookup array.
IMAQ Vision for LabWindows/CVI 5-20 © National Instruments Corporation

© National Instruments Corporation 6-1 IMAQ Vision
Chapter

6
Image Processing Functions
s.

sis
for

s
This chapter describes the IMAQ Vision image processing function
These functions encompass arithmetic and logic operations, image
processing, image filtering, morphological operations, image analy
functions (in both the space and frequency domain), and functions
geometric, complex, and color processing of images.

Arithmetic Operators
The following functions perform arithmetic operations between two
images or between an image and a constant.

IPI_Add

IPIError = IPI_Add (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, float constant);

Purpose
This function adds either an image to an image or a constant to an image. If
source_B_image is equal to IPI_USECONSTANT, a constant is added to an image.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) + source B(x,y)

or

dest(x,y) = source A(x,y) + constant

Note: To add a constant to an image, the dest_image must be of the same image
type as the source_A_image . If the size of one of the two source images i
NULL, the result is the copy of the other. If source_A_image and
source_B_image are different, the dest_image must match the image
type of the source image encoded with the most bits.

Image type: IPI_PIXEL_U8 , I16 , SGL

 for LabWindows/CVI

Chapter 6 Image Processing Functions

integer.

coded
Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image. It can be one of the source images.

constant is the value to add to the input source_A _image for an operation between an
image and a constant. The constant is rounded down if the image is encoded as an

IPI_Subtract

IPIError = IPI_Subtract (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, float constant);

Purpose
This function subtracts an image from an image or a constant from an image. If
source_B _image is equal to IPI_USECONSTANT, a constant is subtracted from an
image.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) – source B(x,y)

or

dest(x,y) = source A(x,y) – constant

Note: To subtract a constant from an image, the dest_image must be of the same
image type as the source_A_image . If the size of one of the two source
images is NULL, the result is the copy of the other. If source_A_image and
source_B_image are different, the dest_image must match the image
type of the source image encoded with the most bits.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image. It can be one of the source images.

constant is the value to subtract from the input source_A _image for an operation
between an image and a constant. The constant is rounded down if the image is en
as an integer.

IMAQ Vision for LabWindows/CVI 6-2 © National Instruments Corporation

Chapter 6 Image Processing Functions

d

coded
IPI_Multiply

IPIError = IPI_Multiply (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, float constant);

Purpose
This function multiplies an image by an image or an image by a constant.

If source_B _image is equal to IPI_USECONSTANT, an operation between an image an
a constant is made.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) * source B(x,y)

or

dest(x,y) = source A(x,y) * constant

Note: To multiply a constant and an image, the dest_image must of be the same
image type as the source_A_image . If the size of one of the two source
images is NULL, the result is the copy of the other. If source_A_image and
source_B_image are different, the dest_image must match the image
type of the source image encoded with the most bits.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image. It can be one of the source images.

constant is the value by which to multiply the source_A _image for an operation
between an image and a constant. The constant is rounded down if the image is en
as an integer.

© National Instruments Corporation 6-3 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

d

t
e

coded
IPI_Divide

IPIError = IPI_Divide (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, float constant);

Purpose
This function divides an image by an image or an image by a constant.

If source_B _image is equal to IPI_USECONSTANT, an operation between an image an
a constant is made.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) / source B(x,y)

or

dest(x,y) = source A(x,y) / constant

Note: To divide an image by a constant, the dest_image must be of the same image
type as the source A image. You cannot divide an image by 0. If the constan
is 0, it is automatically replaced by 1. If the size of one of the two sourc
images is NULL, the result is the copy of the other. If source_A_image and
source_B_image are different, the dest_image must match the image
type of the source image encoded with the most bits.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image. It can be one of the source images.

constant is the value of the divider of the input source_A _image for an operation
between an image and a constant. The constant is rounded down if the image is en
as an integer.

IMAQ Vision for LabWindows/CVI 6-4 © National Instruments Corporation

Chapter 6 Image Processing Functions

nstant

o
IPI_Modulo

IPIError = IPI_Modulo (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, float constant);

Purpose
This function modulo divides between an image and an image or an image and a co
and results in the remainder.

If source_B_image is equal to IPI_USECONSTANT, the modulo of an image and a
constant is produced.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) % source B(x,y)

or

dest(x,y) = source A(x,y) % constant

If the source_A_image is a floating point image type, the function completes the
following operation:

dest(x,y) = source A(x,y) – source B(x,y) * E(source A(x,y) / source B(x,y))

or

dest(x,y) = source A(x,y) – constant * E(source A(x,y) / constant) with E(x) = integer part
of x

Note: To modulo divide an image by a constant, the dest_image must be of the
same image type as the source_A _image . You cannot divide by zero. If the
constant is 0 it is automatically replaced by 1. If the size of one of the tw
source images is NULL, the result is the copy of the other. If
source_A_image and source_B_image are different, the type of the
dest_image must correspond to the type of the source image which is
encoded with the biggest number of bits.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image. It can be one of the source images.

© National Instruments Corporation 6-5 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

coded

1.
er.

.

constant is the value to modulo divide by the input source_A _image for operation
between an image and a constant. The constant is rounded down if the image is en
as an integer.

IPI_MulDiv

IPIError = IPI_MulDiv (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, float

multiplication_constant);

Purpose
This function computes a ratio between two images. Each pixel in source_A _image is
multiplied by the integer value indicated in the multiplication_constant before the
result of this operation is divided by the equivalent pixel found in source_B _image . If
the background is lighter than the image, this function can be used to correct the
background. In a background correction, source_A _image is the acquired image and
source_B _image is the light background.

dest(x,y) = (source A(x,y) * multiplication_constant) / source B(x,y)

The two input images must be of the same image type. If source_B_image is equal to
IPI_USECONSTANT, an operation occurs between an image and a constant.

Note: To complete this function with an image and a constant, the output
dest_image must be of the same image type as the input source_A _image .
You cannot divide by 0. If the constant is 0 it is automatically replaced by
If one of the two source images is empty, the result is the copy of the oth
If source_A_image and source_B_image are different, the type of the
dest_image must correspond to the type of the source image which is
encoded with the biggest number of bits.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image. It can be one of the source images.

multiplication_constant is the value to be multiplied by each pixel in
source_A_image prior to dividing by the equivalent pixel in source_B_image . The
value 255 corresponds to the maximum value for a pixel encoded in an 8-bit image

IMAQ Vision for LabWindows/CVI 6-6 © National Instruments Corporation

Chapter 6 Image Processing Functions

es

e.

of

stant.
Logic Operators
The following functions perform logic operations between two imag
or between an image and a constant.

IPI_And

IPIError = IPI_And (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, int And_or_Nand, int

constant)

Purpose
This function computes the intersection between two images. If source_B_image is
equal to IPI_NOIMAGE , an operation occurs between an image and a constant.

The function completes the following operation for each pixel (x,y) :

dest(x,y) = sourceA(x,y) AND sourceB(x,y)

dest(x,y) = sourceA(x,y) AND constant if source_B_image is equal to IPI_NOIMAGE

Image type: IPI_PIXEL_U8 , I16 , SGL. All input images must have the same image typ

Input
source_A_image and source_B_image are the two source images.

dest_image is the resulting image.

And_or_Nand is set to TRUE if you want the logic operator NAND to occur instead
AND.

constant is the binary constant used for an operation between an image and a con
© National Instruments Corporation 6-7 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

e.

R.

stant.
IPI_Or

IPIError = IPI_Or (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, int Or_or_Nor, int

constant);

Purpose
This function computes the union between two images. If source_B_image is equal to
IPI_NOIMAGE , an operation occurs between an image and a constant.

The function completes the following operation for each pixel (x,y):

dest(x,y) = sourceA(x,y) OR sourceB(x,y)

dest(x,y) = sourceA(x,y) OR constant if source_B_image is equal to IPI_NOIMAGE

Image type: IPI_PIXEL_U8 , I16 , SGL. All input images must have the same image typ

Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image.

Or_or_Nor is set to TRUE if you want the logic operator NOR to occur instead of O

constant is the binary constant used for an operation between an image and a con

IPI_Xor

IPIError = IPI_Xor (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, int Xor_or_Xnor, int

constant);

Purpose
This function selects the pixels which are lit only in one of these two images. If
source_B_image is equal to IPI_NOIMAGE , an operation between an image and a
constant is made.
IMAQ Vision for LabWindows/CVI 6-8 © National Instruments Corporation

Chapter 6 Image Processing Functions

e.

of

stant.

s
xel
The function completes the following operation for each pixel (x,y):

dest(x,y) = sourceA(x,y) XOR sourceB(x,y)

dest(x,y) = sourceA(x,y) XOR constant if source_B_image is equal to IPI_NOIMAGE .

Image type: IPI_PIXEL_U8 , I16 , SGL. All input images must have the same image typ

Input
source_A_image and source_B_image are the two input images.

dest_image is the resulting image.

Xor_or_Xnor is set to TRUE if you want the logic operator XNOR to occur instead
XOR.

constant is the binary constant used for an operation between an image and a con

IPI_Mask

IPIError = IPI_Mask (IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image);

Purpose
This function copies the source_image into the dest_image . If a pixel value is 0 (OFF)
in the mask_image , the corresponding pixel in dest_image is set to 0.

Image type: IPI_PIXEL_U8 , I16 , SGL, COMPLEX, RGB32

Mask image type: IPI_PIXEL_U8

Input
source_image is the input image which is masked.

dest_image is the resulting image.

Note: dest_image must be the same image type as source_image .

mask_image is the image which contains the mask applied to the source image. It i
considered as a binary image. All pixel values different than zero are ON and all pi
values of 0 are OFF.

© National Instruments Corporation 6-9 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

d a

er.
IPI_Compare

IPIError = IPI_Compare (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, IPICPOperator operator,

float constant);

Purpose
This function contains comparison operations between two images or an image an
constant.

If source_B_image is equal to IPI_NOIMAGE , an operation between an image and a
constant is made.

Note: If one of the two source images is empty, the result is the copy of the oth

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32. All input images must have the same
image type.

Input
source_A_image and source_B_image are the two source images.

dest_image is the resulting image.

Operator indicates the comparison operator to use. The valid operators are:

• Average—compute the average

• Min—extract the smallest value

• Max—extract the largest value

• Clear if <—if source_A_image (x,y) < source_B_image (x,y) or a constant ,
dest_image (x,y) = 0 otherwise dest_image (x,y) = source_A_image (x,y)

• Clear if <=—if source_A_image (x,y)<= source_B_image (x,y) or a constant ,
dest_image (x,y) = 0 otherwise dest_image (x,y) = source_A_image (x,y)

• Clear if =—if source_A_image (x,y) = source_B_image (x,y) or a constant ,
dest_image (x,y) = 0 otherwise dest_image (x,y) = source_A_image (x,y)

• Clear if >=—if source_A_image (x,y)>= source_B_image (x,y) or a constant ,
dest_image (x,y) = 0 otherwise dest_image (x,y)= source_A_image (x,y)

• Clear if >—if source_A_image (x,y) > source_B_image (x,y) or a constant ,
dest_image (x,y) = 0 otherwise dest_image (x,y) = source_A_image (x,y)

constant is the value used in comparison with source_A_image for the image/constant
operations.

IMAQ Vision for LabWindows/CVI 6-10 © National Instruments Corporation

Chapter 6 Image Processing Functions

e.

ixels
 in
 in an
abel
an
IPI_LogDiff

IPIError = IPI_LogDiff (IPIImageRef source_A_image, IPIImageRef

source_B_image, IPIImageRef dest_image, int constant);

Purpose
The function completes the following operation for each pixel (x,y):

dest(x,y) = sourceA(x,y) AND NOT (sourceB(x,y))

dest(x,y) = sourceA(x,y) AND NOT constant if the source B image is equal to
IPI_NOIMAGE

If source_B_image is equal to IPI_NOIMAGE , an operation between an image and a
constant is made.

Image type: IPI_PIXEL_U8 , I16 , SGL. All input images must have the same image typ

Input
source_A_image and source_B_image are the two source images.

dest_image is the resulting image.

constant is a constant value that can replace source_B_image for the image/constant
operation.

Processing
The following functions perform image processing.

IPI_Label

IPIError = IPI_Label (IPIImageRef source_image, IPIImageRef

dest_image, int connectivity_8, int *labelled_particles);

Purpose

This function labels the particles in an image. This operation assigns a value to all p
that compose the same group of pixels (i.e. a particle). This color level is encoded
8 or 16 bits depending on the image type. As a result, 255 particles can be labelled
8-bit image and 65,535 particles in a 16-bit image. In the case where you want to l
more than 255 particles in an 8-bit image, it is necessary to apply a threshold with
© National Instruments Corporation 6-11 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ld is

d

ity
rent
interval of (255,255) after processing the first 254 particles. The aim of this thresho
to eliminate the first 254 particles to visualize the next 254 particles.

Note: The source and destination images must be of the same image type an
their borders must be greater than or equal to 2.

Image type: IPI_PIXEL_U8 , I16

Input
source_image is the image to process.

dest_image is the resulting image.

connectivity_8 indicates the connectivity used for particle detection. The connectiv
mode directly determines if an adjacent pixel belongs to the same particle or a diffe
particle.

Possible values are:

• TRUE—The function completes particle detection in connectivity mode 8.

• FALSE—The function completes particle detection in connectivity mode 4.

Output
labelled_particles contains the number of particles detected in the image.

IPI_Threshold

IPIError = IPI_Threshold (IPIImageRef source_image, IPIImageRef

dest_image, float min_value, float max_value, float new_value, int

do_replacement);

Purpose
This function applies a threshold to an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the image to process.

dest_image is the resulting image.

min_value is the lowest pixel value considered.

IMAQ Vision for LabWindows/CVI 6-12 © National Instruments Corporation

Chapter 6 Image Processing Functions

 are

o

 on

ach
max_value is the highest pixel value considered.

new_value replaces all values found between this range. Values outside this range
set to 0.

do_replacement determines if another value is to replace the pixels existing in the
range between min_value and max_value . TRUE means replacement. FALSE means n
replacement.

Note: Use a binary palette when you plan to visualize an image to which a
threshold has been applied. The palette to use for visualization depends
the value of new_value and do_replacement . For example, a threshold
image can be displayed with a gray palette. However, with a high
replacement value, such as 255 (white), you can actually see the
displayed result.

IPI_MultiThreshold

IPIError = IPI_MultiThreshold (IPIImageRef source_image,

IPIImageRef dest_image, int threshold_count, IPIThresholdData

threshold_data[]);

Purpose
This function applies multiple thresholds to an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the image to process.

dest_image is the resulting image.

threshold_count indicates the number of threshold ranges passed in
threshold_data .

threshold_data is an array of clusters specifying the mode and threshold range. E
cluster is composed of the following elements:

• minValue is the lowest pixel value to be taken into account.

• maxValue is the highest pixel value to be taken into account.

© National Instruments Corporation 6-13 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

n

e
sults
ced
tween
t to 0.

sses
one
• newValue is the replace value for all pixels between the two previous values.

• doReplacement determines if the pixels existing in the range between minValue
and maxValue are to be replaced by another value. TRUE means replacement.
FALSE means no replacement.

Note: The threshold operations are completed in the threshold_data order. A
pixel can only be taken into account once, even if the pixel is included i
the threshold range of two different threshold_data .

Example
The threshold data contains the following two structures:

• minValue = 80, maxValue = 150, newValue = 255, doReplacement = TRUE

• minValue = 120, maxValue = 200, doReplacement = FALSE

This example shows two threshold ranges which overlap between 120 and 150. Th
pixels between 120 and 150 are affected only by the first threshold. The following re
occur after execution of this function. The pixel values between 0 and 79 are repla
by 0, the pixel values between 80 and 150 are replaced by 255, the pixel values be
151 and 200 keep their original values, and the pixel values greater than 200 are se

IPI_AutoBThreshold

IPIError = IPI_AutoBThreshold (IPIImageRef image, IPIATMethod

method, int lookup_format, void *lookup_ptr, int *threshold_value);

Purpose
The Automatic Binary Threshold applies a threshold to an image that initially posse
256 gray levels that divides the image into two classes. A statistical calculation is d
to determine the optimal threshold.

Image type: IPI_PIXEL_U8

Input
image is the image to process.

method indicates the threshold method you want to use:

• IPI_AT_CLUSTER —clustering method

• IPI_AT_ENTROPY—entropy method

• IPI_AT_METRIC —metric method

IMAQ Vision for LabWindows/CVI 6-14 © National Instruments Corporation

Chapter 6 Image Processing Functions

g

f the
tween

ndom

oint
er
• IPI_AT_MOMENT—moments method

• IPI_AT_INTER —inter variance method

lookup format indicates the data type of the lookup table using one of the followin
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

Output
lookup_ptr points to a lookup table containing 256 elements encoded in 0 and 1. I
threshold value is 160, the values between 0 and 159 become 0 and the values be
160 and 255 become 1. This array can be directly used by IPI_UserLookup .

threshold_value returns the computed threshold value.

IPI_AutoMThreshold

IPIError = IPI_AutoMThreshold (IPIImageRef image, int

number_of_classes, int lookup_format, void *lookup_ptr,

IPIThresholdData threshold_data[]);

Purpose

Automatic Multi-Threshold is a variant of the classification by clustering method.

The method is based on a reiterated measurement of a histogram. Starting from a ra
sort, the method determines the gray scale values. After finding the best result, it
segments the histogram into n groups. These groups are based on the fact that each p
in a group is closer to the barycenter of its own group than the barycenter of anoth
group.
© National Instruments Corporation 6-15 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ring

g
The function outputs the threshold data in the following two forms:

• A lookup table (LUT) directly usable by IPI_UserLookup

• An array directly usable by IPI_MultiThreshold (Threshold Data)

Image type: IPI_PIXEL_U8

Input
image is the image to process.

number_of_classes is the number of preferred phases. This algorithm uses a cluste
method and can take any value between 2 and 256.

lookup_format indicates the data type of the lookup table using one of the followin
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

Output
lookup_ptr returns a pointer to a lookup table you can use calling IPI_UserLookup() .

This array contains 256 elements encoded between 0 and the number_of_classes .

threshold_data returns an array containing the number_of_classes compatible with
IPI_MultiThreshold . The results are from 0 to n – 1 where n is the
number_of_classes.
IMAQ Vision for LabWindows/CVI 6-16 © National Instruments Corporation

Chapter 6 Image Processing Functions

rom

e

nly
ced

his

ble
the
e

.

.

ct.
IPI_MathLookup

IPIError = IPI_MathLookup IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image, IPILKOperator operator, float

x_value, float minimum_value, float maximum_value);

Purpose
This function converts the pixel values of an image by replacing them with values f
a defined lookup table.

This function modifies the dynamic range of either part of an image or the complet
image, depending on the type of transformation.

Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8

Input
source_image is the image to process.

mask_image indicates the region in the image to use for computing the histogram. O
pixels in the original image that correspond to a non-NULL pixel in the mask are repla
by the values in the lookup table. A replacement on the complete image occurs if t
input is equal to IPI_NOMASK.

dest_image is the resulting image.

operator indicates the mapping procedure to use. The default is 0 or linear. The ta
below indicates the different available possibilities. The horizontal axis represents
pixel values before processing (between Min and Max) and the vertical axis represents th
pixel values (between Dynamic_Min and Dynamic_Max) after processing.

• IPI_LK_LIN —linear. Linear remapping.

• IPI_LK_LOG —logarithmic. Algorithmic remapping operation that results in
extended contrast for small pixel values and less contrast for large pixel values

• IPI_LK_EXP —exponential. An exponential remapping operation that results in
extended contrast for large pixel values and less contrast for small pixel values

• IPI_LK_SQR —square. Similar to exponential but with a more gradual effect.

• IPI_LK_SQRT —square root. Similar to logarithmic but with a more gradual effe
© National Instruments Corporation 6-17 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

f

l

r
it

nly
ced

qual
• IPI_LK_POWX—power X. Causes variable effects depending on the value of X
(default X = 1.5).

• IPI_LK_POW1X —power 1/X. Causes variable effects depending on the value oX
(default X = 1.5).

x_value is a value used for the operators power X and power 1/X only.

minimum_value is the smallest value used for processing. After processing, all pixe
values equal to or less than the minimum_value (in the original image) are set to 0 for an
8-bit image or to the smallest pixel value in the original image for 16-bit and 32-bit
images.

maximum_value is the largest value used for processing. After processing, all pixel
values equal to or less than the maximum_value (in the original image) are set to 255 fo
an 8-bit image or to the largest pixel value in the original image for 16-bit and 32-b
images.

IPI_UserLookup

IPIError = IPI_UserLookup (IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image, int lookup_format, void

*lookup_array, int nb_of_lookup_elements);

Purpose
This function remaps the pixel values in an image.

Image type: IPI_PIXEL_U8 , I16

Mask image type: IPI_PIXEL_U8

Input
source_image is the image to process.

mask_image indicates the region in the image to use for computing the histogram. O
pixels in the original image that correspond to a non-NULL pixel in the mask is repla
by the values in the Lookup table. The complete image is modified if this input is e
to IPI_NOMASK.

dest_image is the resulting image.
IMAQ Vision for LabWindows/CVI 6-18 © National Instruments Corporation

Chapter 6 Image Processing Functions

g

ain

the

tes
ary to

ich
lookup_format indicates the data type of the lookup table using one of the followin
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

lookup_array is a pointer on a replacement color table.

nb_of_lookup_elements indicates the size of the lookup table. This table can cont
256 elements (8-bit) or 65,536 elements (16-bit) depending on the type of
source_image . Individual pixels within the image are not modified in the case where
lookup is missing a corresponding value.

IPI_Equalize

IPIError = IPI_Equalize (IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image, int histogram[], int

number_of_classes, IPIHistoReportPtr histogram_report, float

minimum_value, float maximum_value);

Purpose
This function creates a histogram equalization of an image. This function redistribu
the pixel values of an image to create a linear accumulated histogram. It is necess
execute IPI_Histogram prior to this function to supply histogram_report as input for
IPI_Equalize . The precision of the function depends on the histogram precision, wh
in turn depends on the number of classes used in the histogram.

Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8
© National Instruments Corporation 6-19 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

nly
ced.
age

rray
e

ring

t of
ry

l

-bit

, all

age

e
ues
the

an
Input
source_image is the image to process.

mask_image indicates the region in the image to use for computing the histogram. O
pixels in the original image that correspond to a non-NULL pixel in the mask is repla
All pixels not corresponding to this criteria keep their original value. The complete im
is modified if this input is equal to IPI_NOMASK.

dest_image is the resulting image.

histogram contains the histogram values in an array. The elements found in this a
are the number of pixels per class. The n classes contain all pixel values belonging to th
interval.

[starting value + (n + 1) * interval width, starting value + n * interval width – 1].

number_of_classes is the number of preferred phases. This algorithm uses a cluste
method and can take any value between 2 and 256.

histogram_report is the histogram of the source image and is supplied as an outpu
the IPI_Histogram function. No processing occurs if this input is NULL. It is necessa
to input the same image to both IPI_Histogram and this function.

minimum_value is the smallest value used for processing. After processing, all pixe
values that were equal to or less than the minimum_value (in the original image) are set
to 0 for an 8-bit image or to the smallest pixel value found in the original image for 16
and 32-bit images.

maximum_value (default 0) is the largest value used for processing. After processing
pixel values that were equal to or less than the maximum_value (in the original image)
are set to 255 for an 8-bit image or to the largest pixel value found in the original im
for 16-bit and 32-bit images.

Filters
Filters are divided into two types: linear (or convolutions) and
non-linear.

A linear filter or convolution is a special algorithm that calculates th
value of a pixel based on its own pixel value as well as the pixel val
of its neighbors. The sum of this calculation is divided by the sum of
elements in the matrix to obtain a new pixel value. The size of the
convolution matrix (or kernel) does not have a theoretical limit and c
be either square or rectangular (3x3, 5x5, 5x7, 9x3, 127x127, and
IMAQ Vision for LabWindows/CVI 6-20 © National Instruments Corporation

Chapter 6 Image Processing Functions

ed

ls
e

ge

f
n
so on). Filters belong to one of four families: gradient, laplacian,
smoothing, and gaussian. This organization is determined by the
convolution matrix contents or the weight of each pixel as designat
by its geographical location in relation to the central matrix pixel.

IMAQ Vision supplies you with a set of standard convolution kerne
for each family and for the usual sizes (3x3, 5x5 and 7x7). They ar
accessible from the IPI_GetConvolutionMatrix function. You can
also create your own kernels. You choose the contents of these
user-defined kernels. Their size is virtually unlimited. With this
capability, you can create special effect filters.

The aim of the non-linear filters is either to extract the contours (ed
detection) or to remove isolated pixels. The function IPI_GrayEdge
has six different methods for contour extraction (differentiation,
gradient, Prewitt, Roberts, sigma, Sobel). Two functions,
IPI_NthOrder and IPI_LowPass , can complete the harmonization o
pixel values. These functions require that a kernel size and either a
order number (NthOrder) or a percentage (LowPass) be indicated
on input.

IPI_GetConvolutionMatrix

IPIConvoDescPtr = IPI_GetConvolutionMatrix (IPIConvFamily

convolution_family, int matrix_size, int kernel_number);

Purpose
This function returns a pointer to a predefined convolution matrix.

The function IPI_Convolute() needs a convolution_matrix_descriptor . A
convolution matrix descriptor is a structure described in the IMAQ Vision header file
(IMAQ_CVI.H) as:

typedef struct {

int matrixWidth;

int matrixHeight;

float *matrixElements;

float divider;

} IPIConvoDesc, *IPIConvoDescPtr;`

The first two elements of this structure are used within the IPI_Convolute() function
to learn the structure of the data array given by matrixElements .
© National Instruments Corporation 6-21 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

cts.

can

e

e
ven.

e
The divider is a normalization factor that is applied to the sum of the obtained produ
Under normal conditions, the divider is the sum of all the matrix elements values.

You can construct your own convolution matrix descriptor; but, in most cases, you
use IPI_GetConvolutionMatrix() to obtain directly one of the predefined
convolution matrix descriptors.

Note: A matrix is a 2D array which contains the convolution to be applied to th
image. The size of the convolution is fixed by the size of this array.

A convolution matrix must have odd sized dimensions to contain a central pixel. Th
function does not take into account the boundary if one of the matrix dimensions is e
For example, if the input matrix is 6x4 (X = 6 and Y = 4), the actual convolution is 5x3.
Both the 6th line and the 4th row are ignored.

The processing speed is correlated with the size of the matrix. A 3x3 convolution
processes nine pixels while a 5x5 convolution processes 25 pixels.

Input
convolution_family determines the basic family of the convolution matrix. It can b
one of the following predefined values:

• IPI_COFAM_GRADIENT—gradient

• IPI_COFAM_LAPLACIAN—laplacian

• IPI_COFAM_SMOOTHING—smoothing

• IPI_COFAM_GAUSSIAN—gaussian

matrix_size determines the horizontal and vertical matrix size. The values are:

• 3—corresponding to the convolution with a 3x3 kernel

• 5—corresponding to the convolution with a 5x5 kernel

• 7—corresponding to the convolution with a 7x7 kernel

The convolution_family and the matrix_size determine the matrix type.

kernel_number is the number of the selected matrix belonging to this matrix type.

The following table shows the available predefined convolution matrixes:

IMAQ Vision for LabWindows/CVI 6-22 © National Instruments Corporation

Chapter 6 Image Processing Functions
Table 6-1. Gradient 3x3

matrix # and content matrix # and content matrix # and content matrix # and content

#0
–1 0 1
–1 0 1
–1 0 1

#1
–1 0 1
–1 1 1
–1 0 1

#2
 0 1 1
–1 0 1
–1 –1 0

#3
 0 1 1
–1 1 1
–1 –1 0

#4
 1 1 1
 0 0 0

–1 –1 –1

#5
 1 1 1
 0 1 0

–1 –1 –1

#6
1 1 0
1 0 –1
0 –1 –1

#7
 1 1 0
 1 1 –1
–0 –1 –1

#8
1 0 –1
1 0 –1
1 0 –1

#9
1 0 –1
1 1 –1
1 0 –1

#10
0 –1 –1
1 0 –1
1 1 0

#11
0 –1 –1
1 1 –1
1 1 0

#12
–1 –1 –1
 0 0 0
 1 1 1

#13
–1 –1 –1
 0 1 0
 1 1 1

#14
–1 –1 0
–1 0 1
 0 1 1

#15
–1 –1 0
–1 1 1
 0 1 1

#16
–1 0 1
–2 0 2
–1 0 1

#17
–1 0 1
–2 1 2
–1 0 1

#18
 0 1 2
–1 0 1
–2 –1 0

#19
 0 1 2
–1 1 1
–2 –1 0

#20
 1 2 1
 0 0 0

–1 –2 –1

#21
 1 2 1
 0 1 0

–1 –2 –1

#22
2 1 0
1 0 –1
0 –1 –2

#23
2 1 0
1 1 –1
0 –1 –2

#24
1 0 –1
2 0 –2
1 0 –1

#25
1 0 –1
2 1 –2
1 0 –1

#26
0 –1 –2
1 0 –1
2 1 0

#27
0 –1 –2
1 1 –1
2 1 0

#28
–1 –2 –1
 0 0 0
 1 2 1

#29
–1 –2 –1
 0 1 0
 1 2 1

#30
–2 –1 0
–1 0 1
 0 1 2

#31
–2 –1 0
–1 1 1
 0 1 2
© National Instruments Corporation 6-23 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions
Table 6-2. Gradient 5x5

matrix # and content matrix # and content matrix # and content matrix # and content

#0
 0 –1 0 1 0
–1 –2 0 2 1
–1 –2 0 2 1
–1 –2 0 2 1
 0 –1 0 1 0

#1
 0 –1 0 1 0
–1 –2 0 2 1
–1 –2 1 2 1
–1 –2 0 2 1
 0 –1 0 1 0

#2
 0 0 1 1 1
 0 0 2 2 1
–1 –2 0 2 1
–1 –2 –2 0 0
–1 –1 –1 0 0

#3
 0 0 1 1 1
 0 0 2 2 1
–1 –2 1 2 1
–1 –2 –2 0 0
–1 –1 –1 0 0

#4
 0 1 1 1 0
 1 2 2 2 1
 0 0 0 0 0

–1 –2 –2 –2 –1
 0 –1 –1 –1 0

#5
 0 1 1 1 0
 1 2 2 2 1
 0 0 1 0 0

–1 –2 –2 –2 –1
 0 –1 –1 –1 0

#6
 1 1 1 0 0
 1 2 2 0 0
 1 2 0 –2 –1
 0 0 –2 –2 –1
 0 0 –1 –1 –1

#7
 1 1 1 0 0
 1 2 2 0 0
 1 2 1 –2 –1
 0 0 –2 –2 –1
 0 0 –1 –1 –1

#8
0 1 0 –1 0
1 2 0 –2 –1
1 2 0 –2 –1
1 2 0 –2 –1
0 1 0 –1 0

#9
0 1 0 –1 0
1 2 0 –2 –1
1 2 1 –2 –1
1 2 0 –2 –1
0 1 0 –1 0

#10
0 0 –1 –1 –1
0 0 –2 –2 –1
1 2 0 –2 –1
1 2 2 0 0
1 1 1 0 0

#11
0 0 –1 –1 –1
0 0 –2 –2 –1
1 2 1 –2 –1
1 2 2 0 0
1 1 1 0 0

#12
 0 –1 –1 –1 0
–1 –2 –2 –2 –1
 0 0 0 0 0
 1 2 2 2 1
 0 1 1 1 0

#13
 0 –1 –1 –1 0
–1 –2 –2 –2 –1
 0 0 1 0 0
 1 2 2 2 1
 0 1 1 1 0

#14
–1 –1 –1 0 0
–1 –2 –2 0 0
–1 –2 0 2 1
 0 0 2 2 1
 0 0 1 1 1

#15
–1 –1 –1 0 0
–1 –2 –2 0 0
–1 –2 1 2 1
 0 0 2 2 1
 0 0 1 1 1
IMAQ Vision for LabWindows/CVI 6-24 © National Instruments Corporation

Chapter 6 Image Processing Functions
Table 6-3. Gradient 7x7

matrix # and content matrix # and content matrix # and content matrix # and content

#0
 0 –1 –1 0 1 1 0
–1 –2 –2 0 2 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 0 3 2 1
–1 –2 –2 0 2 2 1
 0 –1 –1 0 1 1 0

#1
 0 –1 –1 0 1 1 0
–1 –2 –2 0 2 2 1
–1 –2 –3 0 3 2 1
–1 –2 –3 1 3 2 1
–1 –2 –3 0 3 2 1
–1 –2 –2 0 2 2 1
 0 –1 –1 0 1 1 0

#2
 0 1 1 1 1 1 0
 1 2 2 2 2 2 1
 1 2 3 3 3 2 1
 0 0 0 0 0 0 0

–1 –2 –3 –3 –3 –2 –1
–1 –2 –2 –2 –2 –2 –1
 0 –1 –1 –1 –1 –1 0

#3
 0 1 1 1 1 1 0
 1 2 2 2 2 2 1
 1 2 3 3 3 2 1
 0 0 0 1 0 0 0

–1 –2 –3 –3 –3 –2 –1
–1 –2 –2 –2 –2 –2 –1
 0 –1 –1 –1 –1 –1 0

#4
0 1 1 0 –1 –1 0
1 2 2 0 –2 –2 –1
1 2 3 0 –3 –2 –1
1 2 3 0 –3 –2 –1
1 2 3 0 –3 –2 –1
1 2 2 0 –2 –2 –1
0 1 1 0 –1 –1 0

#5
0 1 1 0 –1 –1 0
1 2 2 0 –2 –2 –1
1 2 3 0 –3 –2 –1
1 2 3 1 –3 –2 –1
1 2 3 0 –3 –2 –1
1 2 2 0 –2 –2 –1
0 1 1 0 –1 –1 0

#6
 0 –1 –1 –1 –1 –1 0
–1 –2 –2 –2 –2 –2 –1
–1 –2 –3 –3 –3 –2 –1

 0 0 0 0 0 0 0
 1 2 3 3 3 2 1
 1 2 2 2 2 2 1
 0 1 1 1 1 1 0

#7
 0 –1 –1 –1 –1 –1 0
–1 –2 –2 –2 –2 –2 –1
–1 –2 –3 –3 –3 –2 –1

 0 0 0 1 0 0 0
 1 2 3 3 3 2 1
 1 2 2 2 2 2 1
 0 1 1 1 1 1 0

Table 6-4. Laplacian 3x3

matrix # and content matrix # and content matrix # and content matrix # and content

#0
 0 –1 0
–1 4 –1
 0 –1 0

#1
 0 –1 0
–1 5 –1
 0 –1 0

#2
 0 –1 0
–1 6 –1
 0 –1 0

#3
–1 –1 –1
–1 8 –1
–1 –1 –1

#4
–1 –1 –1
–1 9 –1
–1 –1 –1

#5
–1 –1 –1
–1 10 –1
–1 –1 –1

#6
–1 –2 –1
–2 12 –2
–1 –2 –1

#7
–1 –2 –1
–2 13 –2
–1 –2 –1
© National Instruments Corporation 6-25 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions
Table 6-5. Laplacian 5x5

matrix # and content matrix # and content matrix # and content matrix # and content

#0
–1 –1 –1 –1 –1
–1 –1 –1 –1 –1
–1 –1 24 –1 –1
–1 –1 –1 –1 –1
–1 –1 –1 –1 –1

#1
–1 –1 –1 –1 –1
–1 –1 –1 –1 –1
–1 –1 25 –1 –1
–1 –1 –1 –1 –1
–1 –1 –1 –1 –1

Table 6-6. Laplacian 7x7

matrix # and content matrix # and content matrix # and content matrix # and content

#0
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 48 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1

#1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 49 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1
–1 –1 –1 –1 –1 –1 –1

Table 6-7. Smoothing 3x3

matrix # and content matrix # and content matrix # and content matrix # and content

#0
0 1 0
1 0 1
0 1 0

#1
0 1 0
1 1 1
0 1 0

#2
0 2 0
2 1 2
0 2 0

#3
0 4 0
4 1 4
0 4 0

#4
1 1 1
1 0 1
1 1 1

#5
1 1 1
1 1 1
1 1 1

#6
2 2 2
2 1 2
2 2 2

#7
4 4 4
4 1 4
4 4 4
IMAQ Vision for LabWindows/CVI 6-26 © National Instruments Corporation

Chapter 6 Image Processing Functions
Table 6-8. Smoothing 5x5

matrix # and content matrix # and content matrix # and content matrix # and content

#0
1 1 1 1 1
1 1 1 1 1
1 1 0 1 1
1 1 1 1 1
1 1 1 1 1

#1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Table 6-9. Smoothing 7x7

matrix # and content matrix # and content matrix # and content matrix # and content

#0
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 0 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

#1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

Table 6-10. Gaussian 3x3

matrix # and content matrix # and content matrix # and content matrix # and content

#0
0 1 0
1 2 1
0 1 0

#1
0 1 0
1 4 1
0 1 0

#2
1 1 1
1 2 1
1 1 1

#3
1 1 1
1 4 1
1 1 1

#4
1 2 1
2 4 2
1 2 1

#5
1 4 1
4 16 4
1 4 1
© National Instruments Corporation 6-27 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ither

 of the
ust
s not
IPI_Convolute

IPIError = IPI_Convolute (IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image, IPIConvoDescPtr

convolution_matrix_descriptor, IPIBorderMethod border_method);

Purpose
This function filters an image using a linear filter. The calculations are completed e
with integers or floating point values depending on the image type. The source and the
destination image must be of the same type.

The source image must have been created with a border capable of using the size
convolution matrix. A 3x3 matrix must have a minimum border of 1, a 5x5 matrix m
have a minimum border of 2, and so on. The border size of the destination image i
important.

Table 6-11. Gaussian 5x5

matrix # and content matrix # and content matrix # and content matrix # and content

#0
1 2 4 2 1
2 4 8 4 2
4 8 16 8 4
2 4 8 4 2
1 2 4 2 1

Table 6-12. Gaussian 7x7

matrix # and content matrix # and content matrix # and content matrix # and content

#0
1 1 2 2 2 1 1
1 2 2 4 2 2 1
2 2 4 8 4 2 2
2 4 8 16 8 4 2
2 2 4 8 4 2 2
1 2 2 4 2 2 1
1 1 2 2 2 1 1
IMAQ Vision for LabWindows/CVI 6-28 © National Instruments Corporation

Chapter 6 Image Processing Functions

 the

g
Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8

Input
source_image is the image on which the convolution is made.

mask_image is the image that contains the mask applied to the source image.

It indicates the region of the image where the convolution is applied. Only pixels in
original image that correspond to a non-NULL pixel in the mask are processed. A
convolution on the complete image occurs if this input is equal to IPI_NOMASK.

dest_image is the resulting image.

convolution_matrix_descriptor is a pointer to a structure containing the followin
information (see the section IPI_GetConvolutionMatrix in this chapter):

• convolution matrix width

• convolution matrix height

• pointer to convolution matrix elements

• divider (0.0 means matrix sum)

border_method indicates the method used to fill the border of the image before
processing it.

• IPI_BO_MIRROR—repeat the last line of pixels by symmetry

• IPI_BO_COPY—copy the last line of pixels

• IPI_BO_CLEAR —all the border pixels are set to 0
© National Instruments Corporation 6-29 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

e

ates
l
n on

use
s are
IPI_GrayEdge

IPIError = IPI_GrayEdge (IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image, IPIEdgeMethod method, float

threshold);

Purpose
This function extracts the contours (edge detection) in gray level values.

The source and the destination images must be of the same type.

The source image must be created with a border of at least 1. The border size of th
destination image is not important.

Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8

Input
source_image is the image on which the edge detection is made.

mask_image is the image that contains the mask applied to the source image. It indic
the region of the image where the convolution is applied. Only pixels in the origina
image that correspond to a non-NULL pixel in the mask are used. An edge detectio
the complete image occurs if this input is equal to IPI_NOMASK.

dest_image is the resulting image.

method indicates the type of edge detection filter to use.

• IPI_EDG_DIFFER —differentiation. Processing with a 2x2 matrix.

• IPI_EDG_GRADIENT—processing with a 2x2 matrix

• IPI_EDG_PREWITT—processing with a 3x3 matrix

• IPI_EDG_ROBERTS—processing with a 2x2 matrix

• IPI_EDG_SIGNMA—processing with a 3x3 matrix

• IPI_EDG_SOBEL—processing with a 3x3 matrix

threshold is the minimum pixel value to appear in the resulting image. It is rare to
a value greater than 0 for this type of processing because the results of the proces
usually very dark and possess a low dynamic range.
IMAQ Vision for LabWindows/CVI 6-30 © National Instruments Corporation

Chapter 6 Image Processing Functions

 and
ecific
ixels.

ust
s not

ates
l
e
IPI_LowPass

IPIError = IPI_LowPass (IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image, int x_filter_size, int

y_filter_size, float tolerance);

Purpose
This function computes the inter-pixel variation between the pixel being processed
those surrounding it. If the pixel being processed has a variation greater than a sp
percentage, it is set to the average pixel value as calculated from the neighboring p
The source and the destination image must be of the same type.

The source image has to be created with a border capable of using the size of the
convolution matrix. A 3x3 matrix must have a minimum border of 1, a 5x5 matrix m
have a minimum border of 2, and so on. The border size of the destination image i
important.

Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8

Input
source_image is the image on which the low pass processing is made.

mask_image is the image that contains the mask applied to the source image. It indic
the region of the image where the convolution is applied. Only pixels in the origina
image that correspond to a non-NULL pixel in the mask are used. A low pass on th
complete image occurs if this input is equal to IPI_NOMASK.

dest_image is the resulting image.

x_filter_size is the size of the horizontal matrix axis.

y_filter_size is the size of the vertical matrix axis.

tolerance is the percentage of the maximum variation authorized.
© National Instruments Corporation 6-31 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ith a
 a
he

 the
 on

).

.

l
ess
IPI_NthOrder

IPIError = IPI_NthOrder (IPIImageRef source_image, IPIImageRef

mask_image, IPIImageRef dest_image, int x_filter_size, int

y_filter_size, int order_number);

Purpose
This function filters an image using a non-linear filter. This algorithm orders (or
classifies) the pixel values surrounding the pixel being processed. The pixel being
processed is set to the Nth pixel value which is order number . The source and the
destination image must be of the same type. The source image must be created w
border capable of using the size of the convolution matrix. A 3x3 matrix must have
minimum border of 1, a 5x5 matrix must have a minimum border of 2, and so on. T
border size of the destination image is not important.

Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8

Input
source_image is the image on which the processing is made.

mask_image is the image that contains the mask applied to the source image.

It indicates the region of the image where the convolution is applied. Only pixels in
original image that correspond to a non-NULL pixel in the mask are used. Filtering
the complete image occurs if this input is equal to IPI_NOMASK.

dest_image is the resulting image.

x_filter_size is the size of the horizontal matrix axis.

y_filter_size is the size of the vertical matrix axis.

order_number is the order number chosen after classifying the values.

Lighter images result when using a higher order number (such as 7 in a 3x3 matrix

Darker images result when using a lower order number (such as 1 in a 3x3 matrix)

A median (center pixel) operation has the advantage of standardizing the gray leve
values without significantly modifying the shape of the objects or the overall brightn
in the image.
IMAQ Vision for LabWindows/CVI 6-32 © National Instruments Corporation

Chapter 6 Image Processing Functions

um

ry

el

lue

n

old

ns.
ons

 of
. In

 left

 are

 is

and
s an
x3
If the input order value is 0, the obtained image is representative of the local minim
of the source image. If the order value is equal to
(x_filter_size * y_filter_size) – 1, the obtained image is representative of the
local maximum of the source image.

Morphology
The morphological transformations are divided into two groups: bina
morphology and gray level morphology. In binary morphology, the
pixels are either ON (with a pixel value different than 0) or OFF (a pix
value equal to 0). However, with gray level morphology the aim is to
compare a pixel with those surrounding it, and to keep the pixel va
which is the smallest (erosion) or the largest (dilation). Functions
responsible for binary morphological transformations only accept a
8-bit image type, while the functions for gray level morphological
transformations (IPI_GrayMorphology) can accept 8-bit, 16-bit, or
floating images.

An image is considered to be binary after it has undergone a thresh
function (IPI_Threshold , IPI_AutoBThreshold , and so on). In
IMAQ Vision, binary morphology is divided into two groups. The
primary operations operate a single function, IPI_Morphology . These
might be erosions, dilations, openings, closings, or contour extractio
The advanced functions complete multiple operations. These functi
include the separation of particles, removing either small or large
particles, filling holes in particles, removing particles that touch the
border of the image, creating the skeleton of particles, and so on.

Morphological transformations depend on an object known as the
structuring element. With this structuring element, you have control
the effect of the functions on the shape and the boundary of objects
IMAQ Vision, the structuring element descriptor is a structure that
controls which pixels are to be processed and which pixels are to be
alone. A structuring element must have a center pixel and therefore
must have odd-sized axes. The contents of the structuring element
also considered to be binary: zero or not zero. The most common
structuring element is a 3x3 matrix that contains only ones (1). This
usually the default model for binary and gray level morphological
transformations. You are advised to have some knowledge of
structuring elements before experimenting with user-chosen sizes
contents. Most advanced morphology functions do not even posses
input for structuring elements because they are only the standard 3
matrix.
© National Instruments Corporation 6-33 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ust

er

for a
ze of
 5x5

 the

rs
The connected source image for a morphological transformation m
have been created with a border capable of using the size of the
structuring element. A 3x3 structuring element requires a minimum
border of 1, a 5x5 structuring element requires a minimum border
of 3, and so on.

The input connectivity_4/8 is used for the advanced morphology
functions: IPI_LowHighPass , IPI_RejectBorder , and
IPI_FillHole . These functions use this parameter to dictate wheth
a neighboring pixel is considered to be part of the same particle.

IPI_Morphology

IPIError = IPI_Morphology (IPIImageRef source_image, IPIImageRef

dest_image, IPIMOOperator operator, IPIMorphoDescPtr

structuring_element_descriptor);

Purpose
This function completes primary morphological transformations. The source image
morphological transformation must be created with a border capable of using the si
the structuring element. A 3x3 structuring element requires a minimum border of 1, a
structuring element requires a minimum border of 2, and so on. The border size of
destination image is not important.

Image type: IPI_PIXEL_U8

Input
source_image is the image to transform.

dest_image is the resulting image.

operator indicates the type of morphological transformation procedure to use.

• IPI_MO_AUTOM—auto median

• IPI_MO_CLOSE—closing. Dilation followed by an erosion.

• IPI_MO_DILATE —dilation. The opposite of an erosion (see below).

• IPI_MO_ERODE—erosion. Eliminates pixels in a source image.

• IPI_MO_GRADIENT—int & ext edges. Extraction of internal and external contou
of a particle.

• IPI_MO_GRADIOUT—ext edge. Extraction of external contours of a particle.

• IPI_MO_GRADIN—int edge. Extraction of internal contours of a particle.
IMAQ Vision for LabWindows/CVI 6-34 © National Instruments Corporation

Chapter 6 Image Processing Functions

s.

s.

g

f this

ut on
le, if
d

gray
ource

pable

d so
• IPI_MO_HITM —hit miss. Erases all pixels that do not have the same pattern as
found in the structuring element.

• IPI_MO_OPEN—opening. Erosion followed by a dilation.

• IPI_MO_PCLOSE—proper closing. A succession of seven closings and opening

• IPI_MO_POPEN—proper opening. A succession of seven openings and closing

• IPI_MO_THICK —thick. Turn ON all pixels matching the pattern in the structurin
element.

• IPI_MO_THIN —thin. Turn OFF all pixels matching the pattern in the structuring
element.

structuring_element_descriptor is a pointer to a structure that describes the
structuring element to be applied to the image. A structuring element of 3x3 is used i
input is equal to IPI_MO_STD3X3 .

structuring_element_descriptor must have odd sized dimensions to contain a
central pixel. The function does not take into account the even boundary, furthest o
the matrix, if one of the dimensions for the structuring element is even. For examp
the input structuring element is 6x4 (X = 6 and Y = 4), the actual processing is complete
at 5x3. Both the 6th line and the 4th row are ignored.

IPI_GrayMorphology

IPIError = IPI_GrayMorphology (IPIImageRef source_image,

IPIImageRef dest_image, IPIMOOperator operator, IPIMorphoDescPtr

structuring_element_descriptor);

Purpose
This function makes morphological transformations that can be applied directly to
level images. Source and destination image types must be of the same type. The s
image for a morphological transformation must have been created with a border ca
of using the size of the structuring element. A 3x3 structuring element requires a
minimum border of 1, a 5x5 structuring element requires a minimum border of 2, an
on. The border size of the destination image is not important.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
source_image is the image to transform.

dest_image is the resulting image.
© National Instruments Corporation 6-35 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

s.

s.

f this

ut on
le, if
d

 on
 and
n
ses a
operator indicates the type of morphological transformation procedure to use.

• IPI_MO_AUTOM—auto median

• IPI_MO_CLOSE—closing. Dilation followed by an erosion.

• IPI_MO_DILATE —dilation. The opposite of an erosion (see below).

• IPI_MO_ERODE—erosion. Eliminates pixels in a source image.

• IPI_MO_OPEN—opening. Erosion followed by a dilation.

• IPI_MO_PCLOSE—proper closing. A succession of seven closings and opening

• IPI_MO_POPEN—proper opening. A succession of seven openings and closing

structuring_element_descriptor is a pointer to a structure that describes the
structuring element to be applied to the image. A structuring element of 3x3 is used i
input is equal to IPI_MO_STD3X3 .

structuring_element_descriptor must have odd sized dimensions to contain a
central pixel. The function does not take into account the even boundary, furthest o
the matrix, if one of the dimensions for the structuring element is even. For examp
the input structuring element is 6x4 (X = 6 and Y = 4), the actual processing is complete
at 5x3. Both the 6th line and the 4th row are ignored.

IPI_Circles

IPIError = IPI_Circles (IPIImageRef source_image, IPIImageRef

dest_image, float min_radius, float max_radius, IPICirclesReportPtr

*circles_report_array_ptr, int *nb_of_detected_circles);

Purpose
This function separates overlapping circular objects and classifies them depending
their radius, surface, and perimeter. Starting from a binary image, it finds the radius
center of the circular objects even when multiple circular objects are overlapping. I
addition, this function draws the circles in the destination image. It constructs and u
Danielsson distance map to determine the radius of each object.

Image type: IPI_PIXEL_U8

Input
source_image is the image to transform.

dest_image is the resulting image.
IMAQ Vision for LabWindows/CVI 6-36 © National Instruments Corporation

Chapter 6 Image Processing Functions

 not

dius
radius

ith the

n

les
min_radius is the smallest radius (in pixels) to be detected. Undetected circles do
appear in the destination image and have a negative radius value in the circles_report

array_ptr output.

max_radius is the largest radius (in pixels) to be detected. Circles possessing a ra
larger than this value do not appear in the destination image and have a negative
value in the circles_report_array_ptr .

Output

circles_report_array_ptr contains the pointer to the report containing the
measurements for all detected circles. Each element of the report has a structure w
following elements:

• xCenter is the horizontal position (in pixels) of the center of the circle

• yCenter is the vertical position (in pixels) of the center of the circle

• radius is the radius of the circle in pixels

• area is the surface area (in pixels) of the nucleus of the circle in the Danielsso
distance map

Note: Circles with a radius outside the limits of min_radius or max_radius
receive a negative radius value.

nb_of _detected_circles contains the number of detected circles in the image. Circ
with a radius outside the limits of min_radius or max_radius also are included in this
number.

IPI_Convex

IPIError = IPI_Convex (IPIImageRef source_image, IPIImageRef

dest_image);

Purpose
This function computes a convex envelope for labelled particles in an image.

Image type: IPI_PIXEL_U8 , I16

© National Instruments Corporation 6-37 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

he
rder
Input
source_image is the image to transform.

dest_image is the resulting image.

Note: If the image contains more than one object, it is necessary to execute
IPI_Label() prior to this function to label the objects in the image.

IPI_Danielsson

IPIError = IPI_Danielsson (IPIImageRef source_image, IPIImageRef

dest_image);

Purpose
This function completes the distance map based on the Danielsson algorithm. The
Danielsson distance map produces an image and data similar to the function
IPI_Distance , but it is much more accurate.

Image type: IPI_PIXEL_U8

Input
source_image is the image to transform.

dest_image is the resulting image.

IPI_Distance

IPIError = IPI_Distance (IPIImageRef source_image, IPIImageRef

dest_image, IPIMorphoDescPtr structuring_element_descriptor);

Purpose
This function encodes the pixel value of a particle as a function of the distance of t
pixel from the particle border. The source image must have been created with a bo
size of at least 1 and must be an 8-bit image.

Image type: IPI_PIXEL_U8

Input
source_image is the image to transform.

dest_image is the resulting image.

IMAQ Vision for LabWindows/CVI 6-38 © National Instruments Corporation

Chapter 6 Image Processing Functions

f this

 take
 for

 row

es

isting
 The
 that

s they
-bit or

les.

f this

 take
 for
structuring_element_descriptor is a pointer to a structure that describes the
structuring element to be applied to the image. A structuring element of 3x3 is used i
input is equal to IPI_MO_STD3X3.

It must have odd sized dimensions to contain a central pixel. The function does not
into account the even boundary furthest out on the matrix, if one of the dimensions
the structuring element is even. For example, if the input structuring element is 6x4
(X = 6 and Y = 4), the actual processing is done at 5x3. Both the 6th line and the 4th
are ignored.

IPI_Separation

IPIError = IPI_Separation (IPIImageRef source_image, IPIImageRef

dest_image, int number_of_erosion, IPIMorphoDescPtr

structuring_element_descriptor);

Purpose
This function separates touching particles. It operates particularly on small isthmus
found between particles. It completes number_of_erosions . It then reconstructs the
final image based on the results of the erosion. If, during the erosion process, an ex
isthmus is broken or removed, the particles are reconstructed without the isthmus.
reconstructed particles, however, have the same size as the initial particles except
they are separated.

During the erosion process, if no isthmus is broken, the particles are reconstructed a
were initially found (that is, no changes are made). The source image must be an 8
binary image and it must have a border greater than or equal to 1.

Image type: IPI_PIXEL_U8

Input
source_image is the image to transform.

dest_image is the resulting image.

number_of_erosion indicates the number of erosions applied to separate the partic

structuring_element_descriptor is a pointer to a structure that describes the
structuring element to be applied to the image. A structuring element of 3x3 is used i
input is equal to IPI_MO_STD3X3 .

It must have odd sized dimensions to contain a central pixel. The function does not
into account the even boundary furthest out on the matrix, if one of the dimensions
© National Instruments Corporation 6-39 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

 4th

e

.
 or a

e

cles

the structuring element is even. For example, if the input structuring element is 6x4
(X = 6 and Y = 4), the actual processing completes at 5x3. Both the 6th line and the
row are ignored.

IPI_FillHole

IPIError = IPI_FillHole (IPIImageRef source_image, IPIImageRef

dest_image, int connectivity_8);

Purpose
This function fills the holes found in a particle. The holes are filled with a pixel valu
of 1. The source image must be an 8-bit or binary image. This operation creates a
temporary memory space equal to the size of the source image.

Image type: IPI_PIXEL_U8

Input
source_image is the image to transform.

dest_image is the resulting image.

connectivity_8 indicates the connectivity used to determine if a hole is to be filled
The connectivity mode determines if an adjacent pixel belongs to the same particle
different particle. Possible values are:

• TRUE—The function completes particle detection in connectivity mode 8.

• FALSE—The function completes particle detection in connectivity mode 4.

Note: The holes found in contact with the image border are never filled becaus
it is not possible to know whether these holes are part of a particle.

IPI_LowHighPass

IPIError = IPI_LowHighPass (IPIImageRef source_image, IPIImageRef

dest_image, int connectivity_8, int high_pass, int

number_of_erosion, IPIMorphoDescPtr

structuring_element_descriptor);

Purpose
This function filters the particles according to their size. It eliminates or keeps parti
present after a specific number of 3x3 erosions. This function creates a temporary
memory space twice the size of the source image.

IMAQ Vision for LabWindows/CVI 6-40 © National Instruments Corporation

Chapter 6 Image Processing Functions

re to

les.

f this

 take
 for

 4th

image.
Image type: IPI_PIXEL_U8

Input
source_image is the image to transform.

dest_image is the resulting image.

connectivity_8 indicates the connectivity used for particle detection.

The connectivity mode directly determines if an adjacent pixel belongs to the same
particle or a different particle. Possible values are:

• TRUE—The function completes particle detection in connectivity mode 8.

• FALSE—The function completes particle detection in connectivity mode 4.

high_pass controls if the particles present after the specified number of erosions a
be discarded (FALSE) or kept (TRUE).

number_of_erosion indicates the number of erosions applied to separate the partic

structuring_element_descriptor is a pointer to a structure that describes the
structuring element to be applied to the image. A structuring element of 3x3 is used i
input is equal to IPI_MO_STD3X3 .

It must have odd sized dimensions to contain a central pixel. The function does not
into account the even boundary furthest out on the matrix, if one of the dimensions
the structuring element is even. For example, if the input structuring element is 6x4
(X = 6 and Y = 4), the actual processing completes at 5x3. Both the 6th line and the
row are ignored.

IPI_RejectBorder

IPIError = IPI_RejectBorder (IPIImageRef source_image, IPIImageRef

dest_image, int connectivity_8);

Purpose
This function eliminates particles touching the border of an image. This operation
requires the creation of a temporary memory space equal to the size of the source

Image type: IPI_PIXEL_U8
© National Instruments Corporation 6-41 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

the
ongs

h
ich
equal

e an
verse
Input
source_image is the image to transform.

dest_image is the resulting image.

connectivity_8 indicates the connectivity used to determine if a particle touching
border is to be eliminated. The connectivity mode determines if an adjacent pixel bel
to the same particle or a different particle. Possible values are:

• TRUE—The function completes particle detection in connectivity mode 8.

• FALSE—The function completes particle detection in connectivity mode 4.

IPI_Segmentation

IPIError = IPI_Segmentation (IPIImageRef source_image, IPIImageRef

dest_image);

Purpose
Starting from a labelled image, this function calculates the zone of influence of eac
particle. Each labelled particle grows until the particles reach their neighbors at wh
time this growth is stopped. The source image must have a border greater than or
to 1.

Image type: IPI_PIXEL_U8 , I16

Input
source_image is the image to transform.

dest_image is the resulting image.

IPI_Skeleton

IPIError = IPI_Skeleton (IPIImageRef source_image, IPIImageRef

dest_image, IPISkeletonMethod method);

Purpose
Starting from a binary image, this function calculates the skeleton of particles insid
image or in other words the lines separating the zones of influence (skeleton of an in
image). The source image must have a border greater or equal to 1.

Image type: IPI_PIXEL_U8
IMAQ Vision for LabWindows/CVI 6-42 © National Instruments Corporation

Chapter 6 Image Processing Functions

.

ative

ther
ask
ed if
Input
source_image is the image to transform.

dest_image is the resulting image.

method indicates the type of skeleton to use.

• IPI_MO_SKL —uses the Skeleton L structuring element

• IPI_MO_SKM—uses the Skeleton M structuring element

• IPI_MO_SKIZ —uses an inverse skeleton (Skeleton L on an inverse image)

Analysis
The following functions analyze the contents of an image. Some
functions allow you to perform basic and complex particle detection
With others, you can extract measurements and morphological
coefficients for each object in an image.

IPI_Histogram

IPIError = IPI_Histogram (IPIImageRef image, IPIImageRef

mask_image, int number_of_classes, float minimum_value, float

maximum_value, int histogram_array[], IPIHistoReport

*histogram_report);

Purpose
This function computes the histogram of an image. A histogram indicates the quantit
distribution of the pixels of an image per gray level value.

Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8

Input
image is the image used to compute the histogram.

mask_image indicates the region in the image used for computing the histogram. In o
words, only pixels in the original image that correspond to a non-NULL pixel in the m
are used to compute the histogram. A histogram on the complete image is comput
this input is equal to IPI_NOMASK.
© National Instruments Corporation 6-43 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

 from

lue
bit

he

in

in

The

ay
e

number_of_classes indicates the number of classes in the histograms (that is, the
number of elements of the histogram array). The number of calculated classes differ
the indicated value if the minimum and maximum boundaries are overshot. It is advised
to specify an even number of classes (that is, 2,4,8) for 8- or 16-bit images. The va
256 causes a uniform class distribution and one class for each pixel value in an 8-
image. Only pixels whose values fall in the range of minimum_value and
maximum_value are taken into account in the histogram calculation.

minimum_value is the lower limit of the range. Passing the value 0 in minimum_value
and maximum_value ensures that the lowest value is taken from the source image. T
minimum default value depends on the image type.

• IPI_PIXEL_U8 —the minimum default value is 0

• IPI_PIXEL_I16 —the minimum default value is the minimum pixel value found
the image

• IPI_PIXEL_SGL —the minimum default value is the minimum pixel value found
the image

maximum_value is the higher limit of the range. Passing the value 0 in minimum_value
and maximum_value ensures that the highest value is taken from the source image.
maximum default value depends on the image type.

• IPI_PIXEL_U8 —the maximum default value used is 255

• IPI_PIXEL_I16 —the maximum default value used is the maximum pixel value
found in the image

• IPI_PIXEL_SGL —the maximum default value used is the maximum pixel value
found in the image

Output
histogram_array is filled with the histogram values. The elements found in this arr
are the number of pixels per class. The n class contains all pixel values belonging to th
interval.

[Starting Value + (n – 1) * Interval Width, Starting Value + n * Interval Width – 1].

It can be a NULL pointer if you do not need this histogram.

histogram_report is a structure filled the statistical values related to the histogram
computation. It can be a NULL pointer if you do not need this report.

This structure contains the following elements:

• minValue —lowest pixel value found in the calculated area

• maxValue —highest pixel value found in the calculated area
IMAQ Vision for LabWindows/CVI 6-44 © National Instruments Corporation

Chapter 6 Image Processing Functions

ual

he
 the

 the

he
of the

fied
el in
by its
• startValue —lowest pixel value in the first class of the histogram. It can be eq
to the minimum value , or the smallest value found from the input image.

• interval —width of each class

• mean—mean value of the pixels

• stdDeviation —standard deviation of the considered class in the histogram. T
higher this value is, the better the distribution of the values in the histogram and
corresponding image.

• area —number of pixels used in the histogram calculation. This is influenced by
values indicated by minimum_value and maximum_value , and the contents of
mask_image .

IPI_Quantify

IPIError = IPI_Quantify (IPIImageRef image, IPIImageRef

labelled_image, IPIQuantifyElem *global_report, IPIQuantifyElemPtr

*region_report_array_ptr, int *nb_of_region_reports);

Purpose
This function quantifies the contents of an image or the regions within an image. T
function uses a labelled mask image to define the regions. Each region (or particle)
mask image possesses a single unique value.

Image type: IPI_PIXEL_U8 , I16 , SGL

Labelled image type: IPI_PIXEL_U8

Input
image is the image to quantify.

labelled_image indicates the mask image that contains the labelled regions quanti
in the image. Only pixels in the original image that correspond to the equivalent pix
the mask are used for the quantification. Each pixel in this labelled image indicates
value, to which region the corresponding pixel in image belongs. From image , 255
different regions can be quantified directly. This function performs a quantification
completed on the complete image if labelled_image is equal to IPI_NOIMAGE .
© National Instruments Corporation 6-45 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

e

n
ated

ly
d to
er
Output
global_report is a structure containing the following elements:

• mean—mean gray value in the particle

• stdDeviation —standard deviation of the pixel values. Pixel values are better
distributed as the standard deviation increases.

• minValue —lowest gray value in the particle

• maxValue —highest gray value in the particle

• surface —analyzed surface in user-defined units

• area —analyzed surface in pixels

• percent —percentage of the analyzed surface in relation to the complete imag

region_report_array_ptr is a pointer to a structure that contains the quantificatio
data relative to all the regions within an image. This structure is allocated or realloc
within this function. You must deallocate it using free() .

nb_of_region_reports is the number of elements in the
region_report_array_ptr .

IPI_Centroid

IPIError = IPI_Centroid (IPIImageRef image, IPIImageRef mask_image,

float *x_centroid, float *y_centroid);

Purpose
This function computes the centroid (the center of the pixel energy) in an image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Mask image type: IPI_PIXEL_U8

Input
image is the image used to compute the centroid coordinates.

mask_image indicates the region in the image to use for computing the centroid. On
pixels in the original image that correspond to a non-NULL pixel in the mask are use
compute the centroid. A computation on the complete image occurs if this paramet is
equal to IPI_NOMASK.
IMAQ Vision for LabWindows/CVI 6-46 © National Instruments Corporation

Chapter 6 Image Processing Functions

.

Output
x_centroid returns the value of the centroid X coordinate.

y_centroid returns the value of the centroid Y coordinate.

IPI_LineProfile

IPIError = IPI_LineProfile (IPIImageRef image, Point start, Point

end, int profile_format, void *profile_array, int *nb_of_elements,

IPIProfReport *profile_report);

Purpose
This function computes the profile of a line of pixels. This function is similar to the
histogram, working only on a line vector in the image.

Image type: IPI_PIXEL_U8 , I16 , SGL

Input
image is the image used to compute the line profile.

start defines the (x,y) coordinates of the start point of the line profile.

end defines the (x,y) coordinates of the end point of the line profile.

profile_format indicates the data type you want to get in the profile_array using
one of the following LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

Output
profile_array points on the first pixel of the line profile you allocated in the image

nb_of_elements returns the number of pixels filled in the profile_array .
© National Instruments Corporation 6-47 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

els

e.

shold
e

 or to
profile_report points to a structure which contains relevant information on the pix
found in the indicated line. It returns the following elements:

• start —corrected start point

• end —corrected end point

• minValue —lowest value of the line

• maxValue —highest value of the line

• meanValue —mean gray value of the line

• stdDeviation —standard deviation of the line profile

• count —number of pixels on the line

IPI_BasicParticle

IPIError = IPI_BasicParticle(IPIImageRef image, int connectivity_8,

IPIBasicPReportPtr *particles_report_array_ptr, int

*nb_of_detected_particles);

Purpose
This function detects and returns the area and position of particles in a binary imag

Image type: IPI_PIXEL_U8

Input
image is the image scanned to detect the particles. The image must be binary (a thre
IPI_PIXEL_U8 image). A particle consists of pixels that are not set to 0. This sourc
image must have been created with a border size of at least 2.

connectivity_8 indicates the connectivity used for particle detection.

The connectivity mode determines if an adjacent pixel belongs to the same particle
a different particle. Possible values are:

• TRUE—The function completes particle detection in connectivity mode 8.

• FALSE—The function completes particle detection in connectivity mode 4.
IMAQ Vision for LabWindows/CVI 6-48 © National Instruments Corporation

Chapter 6 Image Processing Functions

at

.

shold
ust

 or to
Output
particles_report_array_ptr returns a pointer to a set of measurements on the
detected particles. Each report contains the following elements:

• area —surface of the particle in number of pixels

• surface —surface of the particle in user-defined units

• particleRect —bounding rectangle of the particle. It is a standard rectangle th
contains the coordinates of a bounding rectangle for the particle.

Note: This structure is allocated or reallocated within this function. You must
deallocate it using free() .

nb_of_detected _particles returns the number of particles detected in the image
This value indicates the number of reports allocated in the buffer returned in
particles_report_array_ptr.

IPI_Particle

IPIError = IPI_Particle (IPIImageRef image, int connectivity_8,

IPIFullPReportPtr *particles_report_array_ptr, int

*nb_of_detected_particles);

Purpose
This function detects and returns all parameters of particles in a binary image.

Image type: IPI_PIXEL_U8

Input
image is the image scanned to detect the particles. The image must be binary (a thre
IPI_PIXEL_U8 image). A particle consists of pixels that are not set to 0. This image m
have a border size of at least 2.

connectivity_8 indicates the connectivity used for particle detection.

The connectivity mode determines if an adjacent pixel belongs to the same particle
a different particle. Possible values are:

• TRUE—The function completes particle detection in connectivity mode 8.

• FALSE—The function completes particle detection in connectivity mode 4.

© National Instruments Corporation 6-49 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ts

 in

t

ot

Output
particles_report_array_ptr returns a pointer to a set of measurements on the
detected particles. Each report contains the following elements:

• area —surface of the particle in number of pixels

• surface —surface of the particle in user-defined units

• perimeter —perimeter size of the particle in user-defined units

• holeNumber —number of holes in the particle

• holeArea —total surface area of all the holes in the particle in user-defined uni

• holePerimeter —total perimeter size calculated from every hole in the particle
user units

• includeRect —bounding rectangle of the particle. It is a standard rectangle tha
contains the coordinates of a bounding rectangle for the particle.

• sigmaX —sum of X-axis for each pixel of the particle

• sigmaY —sum of Y-axis for each pixel of the particle

• sigmaXX —sum of X-axis squared for each pixel of the particle

• sigmaYY —sum of Y-axis squared for each pixel of the particle

• sigmaXY —sum of the X-axis and Y-axis for each pixel of the particle

• segmentMax —longest segment of the particle

• segmentMaxPt —left-most pixel in the segmentMax of the particle

• projectionX —half the sum of the horizontal segments in a particle which do n
overlap another adjacent horizontal segment

• projectionY —half the sum of the vertical segments in a particle which do not
overlap another adjacent vertical segment

Note: This structure is allocated or reallocated within this function. You must
deallocate it using free() .

nb_of_detected_particles returns the number of particles detected in the image.
This value indicates the number of reports allocated in the buffer returned by
particles_report_array_ptr .

IMAQ Vision for LabWindows/CVI 6-50 © National Instruments Corporation

Chapter 6 Image Processing Functions

s

its

e

f
IPI_ParticleCoeffs

IPIError = IPI_ParticleCoeffs (IPIImageRef image, int

parameters_array[], int nb_of_parameters, IPIFullPReport

particles_report_array[], int nb_of_particle_reports, float

particles_coefficients_array[]);

Purpose
Using reports coming from the IPI_Particle() , this function computes and returns a
set of measurements.

Image type: IPI_PIXEL_U8

Input
Image is the image previously used in IPI_Particle() . This function needs this image
to get the calibration values.

parameter_array is an array containing the parameter list you want to extract. Thi
parameter list has to contain elements taken from the following predefined values:

• IPI_PP_Area — surface of a particle in number of pixels

• IPI_PP_AreaCalibrated —surface of a particle in user-defined units

• IPI_PP_HoleNumber —number of hole in the particle

• IPI_PP_HoleArea —total surface of every holes in a particle in user-defined un

• IPI_PP_AreaTotal —full surface occupied by the particles and its holes in
user-defined units

• IPI_PP_AreaScanned —surface of the image in user-defined units

• IPI_PP_RatioAreaTotal —ratio of the surface of the particle to the total surfac
of particles

• IPI_PP_RatioAreaScanned —ratio of the surface of the particle to the surface o
the image

• IPI_PP_CenterMassX —abscissa of the center of mass of the particle

• IPI_PP_CenterMassY —ordinate of the center of mass of the particle

• IPI_PP_RectLeft —abscissa of the bounding rectangle

• IPI_PP_RectTop —upper ordinate of the bounding rectangle

• IPI_PP_RectRight —right abscissa of the bounding rectangle

• IPI_PP_RectBottom —lower ordinate of the bounding rectangle

• IPI_PP_RectWidth —width of the bounding rectangle in user-defined units
© National Instruments Corporation 6-51 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

at

do

o

e

o
• IPI_PP_RectHeight —height of the bounding rectangle in user-defined units

• IPI_PP_MaxSegment —longest horizontal segment of the particle

• IPI_PP_MaxSegmentX —left abscissa of the longest segment of the particle

• IPI_PP_MaxSegmentY —ordinate of the longest segment of the particle

• IPI_PP_Perimeter —perimeter size of a particle in user-defined units

• IPI_PP_HolePerimeter —total perimeter size calculated from every hole in a
particle in user-defined units

• IPI_PP_SigmaX —sum of X-axis for each pixel of the particle

• IPI_PP_SigmaY —sum of Y-axis for each pixel of the particle

• IPI_PP_SigmaXX —sum of X-axis squared for each pixel of the particle

• IPI_PP_SigmaYY —sum of Y-axis squared for each pixel of the particle

• IPI_PP_SigmaXY —sum of the X-axis and Y-axis for each pixel of the particle

• IPI_PP_ProjectionX —half the sum of the horizontal segments in a particle th
do not overlap another adjacent horizontal segment

• IPI_PP_ProjectionY —half the sum of the vertical segments in a particle that
not overlap another adjacent vertical segment

• IPI_PP_IXX —coefficients of the X-axis squared inertia matrix

• IPI_PP_IYY —coefficients of the Y-axis squared inertia matrix

• IPI_PP_IXY —coefficients of the XY-axis inertia matrix

• IPI_PP_MeanChordX —mean length of horizontal segments

• IPI_PP_MeanChordY —mean length of vertical segments

• IPI_PP_MaxIntercept —longest segment of the particle

• IPI_PP_MeanIntercept —mean length segment of the particle

• IPI_PP_Orientation —orientation of the longest segment of the particle

• IPI_PP_EquEllipseMinor —minor axis of the equivalent ellipse

• IPI_PP_EllipseMajor —major axis of the equivalent ellipse equivalent to the
particle surface

• IPI_PP_EllipseMinor —minor axis of the equivalent ellipse of equal surface t
the particle

• IPI_PP_RatioEquEllipse —ratio of equivalent ellipse axes

• IPI_PP_RectBigSide —longest segment of the rectangle of equal surface to th
particle in user-defined units

• IPI_PP_RectSmallSide —smallest segment of the rectangle of equal surface t
the particle in user-defined units
IMAQ Vision for LabWindows/CVI 6-52 © National Instruments Corporation

Chapter 6 Image Processing Functions

dered

le

t
• IPI_PP_RatioRect —ratio of the axes of the particle rectangle

• IPI_PP_Elongation —elongation factor

• IPI_PP_Compactness —compactness factor

• IPI_PP_Heywood —Heywood factor

• IPI_PP_TypeFactor —complex factor between surface and inertia matrix

• IPI_PP_HydraulicRadius —hydraulic radius in user-defined units

• IPI_PP_WaddelDisk —Waddle disk factor

• IPI_PP_Diagonal —equivalent rectangle diagonal in user-defined units

nb_of_parameters indicates the number of elements of the parameter_array .

particles_report_array is an array containing the particle reports.

nb_of_particle_reports is the number of particles of the particles report array.

Output
particles_coefficient_array is an array filled with the computed particle
coefficients. You must allocate an array big enough to receive
nb_of_parameters * nb_of_particle_reports single floating values. The
computed coefficients are returned particle by particle. That means it can be consi
as a 2D array in which a row contains nb_of_parameters coefficients extracted from a
particle and each column contains the same coefficients extracted from each partic
measurement.

IPI_ParticleDiscrim

IPIError = IPI_ParticleDiscrim (IPIImageRef image, IPIPartDiscrim

discrimination_array[], int nb_of_discriminations, IPIFullPReport

particle_report_array[], int nb_of_particle_report, int

*nb_of_remaining_particles);

Purpose
This function filters particle reports returned from IPI_Particle() according to a set
of user-defined coefficient ranges.

Note: The image is not modified. This function works only on the particle repor
array, removing particle reports that do not match the selection criteria.

Image type: IPI_PIXEL_U8

© National Instruments Corporation 6-53 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

h

cle
Input
image is the image previously used in IPI_Particle() . This function needs this image
to get the calibration values.

discrimination_array describes the criteria for the particle you want to keep. Eac
element of this array has to contain a structure giving the following information:

• parameter —coefficient predefined value (see the section IPI_ParticleCoeffs in this
chapter)

• minValue —coefficient lowest value

• maxValue —coefficient highest value

Only the particles with a parameter matching the range given by minValue and
maxValue are not removed from the particles_report_array .

nb_of_discriminations is the number of discrimination structures contained in
discrimination_array .

particle_report_array is an array containing the particle reports coming from
IPI_Particle() . The array is processed and returned with only the matching parti
reports.

nb_of_particle_report indicates the number of particles in the
particle_report_array before the discrimination process.

Output
nb_of_remaining _particles returns the number of particles contained in the
particles_report_array after the discrimination.
IMAQ Vision for LabWindows/CVI 6-54 © National Instruments Corporation

Chapter 6 Image Processing Functions

t,

to the

f the

 the
sing
e 3D

 is
) in

ne
 3D
ity

le:
Geometry
The following section includes descriptions for 3D view, rotate, shif
and symmetry functions.

IPI_3DView

IPIError = IPI_3DView (IPIImageRef source_image, IPIImageRef

dest_image, int subsample, int maximum_height, IPI3DDirection

direction, IPI3DOptionsPtr options);

Purpose
This function displays an image using an isometric view. Each pixel from the image
source appears as a column of pixels in the 3D view. The pixel value corresponds
altitude.

Image type: IPI_PIXEL_U8 , COMPLEX

Input
source_image is the input image.

dest_image is the resulting image. It must be an 8-bit image.

subsample is a factor applied to the source image to calculate the final dimensions o
3D view image. This factor is a divider that is applied to the source image when
determining the final height and width of the 3D view image. A factor of 1 uses all of
source image pixels when determining the 3D view image. A factor of 2 results in u
every other line and every other column of the source image pixels to determine th
view image.

maximum_height defines the maximum height of a pixel from the image source that
drawn in 3D. This value is mapped from a maximum of 255 (from the source image
relation to the baseline in the 3D view. A value of 255 therefore assigns a one to o
correspondence between the intensity value in the source image and the display in
view. The default value of 64 results in a 4x4 reduction between the original intens
value of the pixel in the source image and the final displayed 3D image.

direction defines the 3D orientation. The following four viewing angles are possib

• IPI_3D_NW —northwest view

• IPI_3D_SW —southwest view
© National Instruments Corporation 6-55 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

n be

e can

85.

 the
• IPI_3D_SE —southeast view

• IPI_3D_NE —northeast view

Options is a cluster containing the following elements:

• alpha defines the angle between the horizontal and the baseline. The value ca
set between 15° and 45°. The default value is 30°.

• beta defines the angle between the horizontal and the second baseline. The valu
be set between 15° and 45°. The default value is 30°.

• border defines the border size in the 3D view. The default value is 20.

• background defines the background color for the 3D view. The default value is

• plane indicates the view to show if the image is complex. For complex images
default plane shown is the magnitude plane. The four possible planes can be
visualized from a complex image, as follows:

– 0—real

– 1—imaginary

– 2—magnitude

– 3—phase

IPI_Rotate

IPIError = IPI_Rotate (IPIImageRef source_image, IPIImageRef

dest_image, float angle, float fill_value);

Purpose
This function rotates an image counterclockwise.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32

Input
source_image is the input image.

dest_image is the resulting image.

angle indicates the rotation angle (in degrees).

fill_value defines the new pixel value due to the rotation.
IMAQ Vision for LabWindows/CVI 6-56 © National Instruments Corporation

Chapter 6 Image Processing Functions
IPI_Shift

IPIError = IPI_Shift (IPIImageRef source_image, IPIImageRef

dest_image, int x_shift, int y_shift, float fill_value);

Purpose
This function translates an image based on a horizontal and vertical offset.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32

Input
source_image is the input image.

dest_image is the resulting image.

x_shift is the horizontal offset to add to the image.

y_shift is the vertical offset to add to an image.

fill_value defines the new pixel value due to the translation.

IPI_Symmetry

IPIError = IPI_Symmetry (IPIImageRef source_image, IPIImageRef

dest_image, IPISymOperator symmetry_type);

Purpose
This function transforms an image around an axis or point of symmetry.

Image type: IPI_PIXEL_U8 , I16 , SGL, RGB32

Input
source_image is the source image.

dest_image is the resulting image.

symmetry_type indicates the symmetry to use.

• IPI_SY_HOR —(default) horizontal. Based on the horizontal axis of the image.

• IPI_SY_VER —vertical. Based on the vertical axis of the image.

• IPI_SY_CEN —central. Based on the center of the image.
© National Instruments Corporation 6-57 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

e

age

n

 a

r

ated
nal
f

h
:
n

tial

 low
ove,

s

ter

• IPI_SY_DG1 —1st diagonal. Based on the first diagonal of the image. The imag
must be square.

• IPI_SY_DG2 —2nd diagonal. Based on the second diagonal of the image. The im
must be square.

Complex
Frequency processing is another way to extract information from a
image. Instead of using the location and direction of light intensity
variations, you can manipulate the frequency of occurrence in the
spatial domain. This new component is called the spatial frequency and
is the frequency with which the light intensity in an image varies as
function of its spatial coordinates.

Spatial frequencies of an image are computed with the Fast Fourie
Transform (FFT). The FFT results in a complex image where high
frequencies are grouped at the center, while low frequencies are loc
at the edges. The FFT is calculated in two steps: 1) a one-dimensio
transform of the rows followed by 2) a one-dimensional transform o
the columns of the results of step one. The complex numbers whic
compose the FFT plane are encoded in 64-bit floating point values
32 bits for the real part and 32 bits for the imaginary part. IMAQ Visio
can read and write complex images through IPI_ReadFile and
IPI_WriteFile using the AIPD format only.

In an image, details and sharp edges are associated with high spa
frequencies because they introduce significant gray level variations
over short distances. Gradually varying patterns are associated with
spatial frequencies. Filtering spatial frequencies is a means to rem
attenuate, or highlight the spatial components to which they relate.

A low-pass_frequency_filter can be used to attenuate frequencie
present in the FFT plane. It suppresses information related to fast
variations of light intensities in the spatial image. An inverse FFT af
a low-pass frequency filter produces an image with reduced noise,
details, texture and sharp edges (for example, IPI_ComplexAttenuate
or IPI_ComplexTruncate).
IMAQ Vision for LabWindows/CVI 6-58 © National Instruments Corporation

Chapter 6 Image Processing Functions

e

al
er
d

k

n
n

he
A high-pass_frequency_filter can be used to attenuate or remov
(truncate) low frequencies present in the FFT plane. It suppresses
information related to slow variations of light intensities in the spati
image. In this case, an inverse FFT after a high-pass frequency filt
produces an image with sharpened overall patterns and emphasize
details (for example, IPI_ComplexAttenuate or
IPI_ComplexTruncate).

A mask_frequency_filter removes frequencies contained in a mas
indicated by you (IPI_Mask).

IPI_WindDraw handles the display of complex images. This functio
displays an image by flipping the high and low frequencies and the
dividing their values by a size factor.

This size factor m is calculated using the following formula.

m = f (w + h) = f (32.2n) = 2.4n,

where w is the width of the image and h is its height.

IPI_FFT

IPIError = IPI_FFT (IPIImageRef source_image, IPIImageRef

complex_dest_image);

Purpose
This function computes the FFT of an image.

Source image type: IPI_PIXEL_U8 , I16 , SGL, COMPLEX

Dest image type: IPI_PIXEL_COMPLEX

Input
source_image is the source image. The image must have a resolution of 2n x 2m.

complex_dest_image is the complex image that contains the resulting FFT image. T
calculated FFT is not normalized. (You can use IPI_ComplexDivide to normalize the
complex image.) The complex image is resized to the source image.
© National Instruments Corporation 6-59 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

it
T
he
.

pixel
IPI_InverseFFT

IPIError = IPI_InverseFFT (IPIImageRef complex_source_image,

IPIImageRef dest_image);

Purpose
This function computes the inverse FFT of a complex image.

Note: This function uses a buffer equal to the size of the complex image. An 8-b
image with a resolution of 256x256 pixels uses 64 KB of memory. The FF
associated with this image requires eight times the memory or 512 KB. T
calculation of the inverse FFT also requires a temporary buffer of 512 KB
Therefore the total memory necessary for this operation is 1080 KB.

Source image type: IPI_PIXEL_COMPLEX

Dest image type: IPI_PIXEL_U8 , I16 , SGL, COMPLEX

Input
complex_source_image is the source image.

dest_image contains the resulting FFT image.

IPI_ComplexConjugate

IPIError = IPI_ComplexConjugate (IPIImageRef complex_source_image,

IPIImageRef complex_dest_image);

Purpose
This function computes the conjugate of a complex image. It converts the complex
data z = a + ib of an FFT image into z = a – ib.

Image type: IPI_PIXEL_COMPLEX

Input
source_image is the source image.

complex_dest_image contains the resulting image.

IMAQ Vision for LabWindows/CVI 6-60 © National Instruments Corporation

Chapter 6 Image Processing Functions

te the
IPI_ComplexFlipFrequency

IPIError = IPI_ComplexFlipFrequency (IPIImageRef

complex_source_image, IPIImageRef complex_dest_image);

Purpose
This function transposes the complex components of an FFT image.

Note: The high and low frequency components of an FFT image are flipped to
produce a central symmetric representation of the spatial frequencies.

Image type: IPI_PIXEL_COMPLEX

Input
complex_source_image is the source image.

complex_dest_image is the image that contains the flipped frequencies image.

IPI_ComplexAttenuate

IPIError = IPI_ComplexAttenuate (IPIImageRef complex_source_image,

IPIImageRef complex_dest_image, int high_pass);

Purpose
This function attenuates the frequencies of a complex image.

Image type: IPI_PIXEL_COMPLEX

Input
complex_source_image is the source image.

complex_dest_image contains the resulting image.

high_pass determines which frequencies are attenuated. Choose TRUE to attenua
high frequencies or FALSE to attenuate the low frequencies.

© National Instruments Corporation 6-61 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

the

n a

er

een
IPI_ComplexTruncate

IPIError = IPI_ComplexTruncate (IPIImageRef complex_source_image,

IPIImageRef complex_dest_image, int high_pass, float

truncation_frequency);

Purpose
This function truncates the frequencies of a complex image.

Image type: IPI_PIXEL_COMPLEX

Input
complex_source_image is the source image.

complex_dest_image contains the resulting image.

high_pass determines which frequencies are truncated. Choose TRUE to remove
high frequencies or FALSE to remove the low frequencies.

truncation_frequency is the percentage of the frequencies that are retained withi
Fourier transformed image. The default value is 10%. This percentage works in
conjunction with the length of the diagonal of the FFT image and the Boolean
high_pass . For example, a FALSE value or low_pass and 10% results in retaining 10%
of the frequencies starting from the center (low frequencies.) A TRUE value or
High_pass and 10% results in retaining 10% of the frequencies starting from the out
periphery.

IPI_ComplexAdd

IPIError = IPI_ComplexAdd (IPIImageRef complex_source_A_image,

IPIImageRef complex_source_B_image, IPIImageRef

complex_dest_image, IPIPixComplex constant);

Purpose
This function adds two images where the first is a complex image. An operation betw
an image and a constant occurs when the input complex_source_B_image is equal to
IPI_USECONSTANT.
IMAQ Vision for LabWindows/CVI 6-62 © National Instruments Corporation

Chapter 6 Image Processing Functions

es.

n
The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) + source B(x,y)

or

dest(x,y) = source A(x,y) + constant

The result of this operation follows:

• The resulting real part is the sum of the real parts of the input images, and

• the resulting imaginary part is the sum of the imaginary parts of the input imag

Image type: IPI_PIXEL_COMPLEX

Input
complex_source_A_image is the first source image and must be a complex image.

complex_source_B_image is the second source image.

complex_dest_image is the image that contains the result of the operation.

complex_constant is the constant added to the input complex_source_A_image for
an operation between an image and a constant.

IPI_ComplexSubtract

IPIError = IPI_ComplexSubtract (IPIImageRef complex_source_A_image,

IPIImageRef complex_source_B_image, IPIImageRef

complex_dest_image, IPIPixComplex constant);

Purpose
This function subtracts two images where the first is a complex image. An operatio
between an image and a constant occurs when the input complex_source_B_image is
equal to IPI_USECONSTANT.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) – source B(x,y)

or

dest(x,y) = source A(x,y) – constant
© National Instruments Corporation 6-63 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ges,

he

n

 and

put
The result of this operation follows:

• The resulting real part is the subtraction between the real parts of the input ima
and

• the resulting imaginary part is the subtraction between the imaginary parts of t
input images.

Image type: IPI_PIXEL_COMPLEX

Input
complex_source_A_image is the first source image and must be a complex image.

complex_source_B_image is the second source image.

complex_dest_image contains the resulting image.

complex_constant is the constant subtracted from the input
complex_source_A_image for the image/constant operation.

IPI_ComplexMultiply

IPIError = IPI_ComplexMultiply (IPIImageRef complex_source_A_image,

IPIImageRef complex_source_B_image, IPIImageRef

complex_dest_image, IPIPixComplex constant);

Purpose
This function multiplies two images where the first is a complex image. An operatio
between an image and a constant occurs when the input complex_source_B_image is
equal to IPI_USECONSTANT.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) * source B(x,y)

or

dest(x,y) = source A(x,y) * constant

The result of this operation follows:

• The resulting real part is the multiplication of the real parts of the input images,

• the resulting imaginary part is the multiplication of the imaginary parts of the in
images.
IMAQ Vision for LabWindows/CVI 6-64 © National Instruments Corporation

Chapter 6 Image Processing Functions

, and

put
Image type: IPI_PIXEL_COMPLEX

Input
complex_source_A_image is the first source image.

complex_source_B_image is the second source image.

complex_dest_image contains the resulting image.

complex_constant is the constant multiplier of the complex_source_A_image for the
image/constant operation.

IPI_ComplexDivide

IPIError = IPI_ComplexDivide (IPIImageRef complex_source_A_image,

IPIImageRef complex_source_B_image, IPIImageRef

complex_dest_image, IPIPixComplex constant);

Purpose
This function divides two images where the first is a complex image. An operation
between an image and a constant occurs when the input complex_source_B_image is
equal to IPI_USECONSTANT.

The two possibilities are distinguished in the following manner:

dest(x,y) = source A(x,y) / source B(x,y)

or

dest(x,y) = source A(x,y) / constant

The result of this operation follows:

• The resulting real part is the division between the real parts of the input images

• the resulting imaginary part is the division between the imaginary parts of the in
images.

Image type: IPI_PIXEL_COMPLEX

Input
complex_source_A_image is the first source image.

complex_source_B_image is the second source image.
© National Instruments Corporation 6-65 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

y.

gle.

big

he
complex_complex_dest_image contains the resulting image.

complex_constant is the constant divider of the complex_source_A_image for the
image/constant operation.

IPI_ComplexImageToArray

IPIError IPI_ComplexImageToArray (IPIImageRef complex_image, Rect

rectangle, IPIPixComplex complex_array[], int *array_x_size, int

*array_y_size);

Purpose
This function reads the pixels from a complex image into a 2D single complex arra

Image type: IPI_PIXEL_COMPLEX

Input
complex_image is the image used for this operation.

rectangle is a Rect structure containing the coordinates and the size of the rectan

Output
complex_array is the pointer of the complex pixel array allocated by you. It must be
enough to contain all elements.

array_x_size returns the horizontal number of copied elements in the array.

array_y_size returns the vertical number of copied elements in the array.

IPI_ArrayToComplexImage

IPIError IPI_ArrayToComplexImage (IPIImageRef complex_image,

IPIPixComplex complex_array[], int array_x_size, int array_y_size);

Purpose
This function creates a complex image, starting from an array of complex values. T
resulting image is resized to array_x_size and array_y_size .

Image type: IPI_PIXEL_COMPLEX
IMAQ Vision for LabWindows/CVI 6-66 © National Instruments Corporation

Chapter 6 Image Processing Functions

s

e of

gle.

tain
Input
complex_image is the image to modify.

complex_array defines the pointer to the pixel array containing the new pixel value
which are copied into the image.

array_x_size is the horizontal number of elements in the array.

array_y_size is the vertical number of elements in the array.

IPI_ComplexPlaneToArray

IPIError IPI_ComplexPlaneToArray (IPIImageRef complex_image, int

plane, Rect rectangle, float float_array[], int *array_x_size, int

*array_y_size);

Purpose
This function extracts the pixels from the real, imaginary, magnitude, or phase plan
a complex image into a floating point 2D array.

Image type: IPI_PIXEL_COMPLEX

Input
complex_image is the image used for this operation.

plane selects the plane to extract.

• 0—real

• 1—imaginary

• 2—magnitude

• 3—phase

rectangle is a Rect structure containing the coordinates and the size of the rectan

Output
float_array is the pointer of an array allocated by you. It must be big enough to con
all the copied elements.

array_x_size returns the horizontal number of copied elements in the array.

array_y_size returns the vertical number of copied elements in the array.
© National Instruments Corporation 6-67 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions
IPI_ArrayToComplexPlane

IPIError IPI_ArrayToComplexPlane (IPIImageRef complex_image, int

plane, float float_array[], int array_x_size, int array_y_size);

Purpose
Starting from a 2D array of floating point values, this function replaces the real or
imaginary plane of a complex image.

Image type: IPI_PIXEL_COMPLEX

Input
complex_image is the image used for this operation.

plane selects the plane to extract.

• 0—real

• 1—imaginary

float_array defines the pointer of the pixel array containing the new pixel values
which are copied into the image plane.

array_x_size is the horizontal number of elements in the array.

array_y_size is the vertical number of elements in the array.

IPI_ExtractComplexPlane

IPIError = IPI_ExtractComplexPlane. (IPIImageRef

complex_source_image, IPIImageRef dest_image, int plane);

Purpose
This function extracts the real or imaginary plane of a complex image.

Image type: IPI_PIXEL_COMPLEX , SGL

Input
complex_source_image is the source image used for this operation.

dest_image is the resulting spatial image that contains the extracted plane.
IMAQ Vision for LabWindows/CVI 6-68 © National Instruments Corporation

Chapter 6 Image Processing Functions

blue.
plane indicates the plane to be extracted.

• 0—real

• 1—imaginary

• 2—magnitude

• 3—phase

IPI_ReplaceComplexPlane

IPIError = IPI_ReplaceComplexPlane (IPIImageRef source_image,

IPIImageRef complex_dest_image, int plane);

Purpose
This function replaces the real or imaginary plane of a complex image.

Image type: IPI_PIXEL_COMPLEX

Input
source_image is the source image used for this operation.

complex_dest_image is the image that contains the result.

plane selects the plane to replace.

• 0—real

• 1—imaginary

Color
Typical color images are coded using three planes: red, green, and
In reality, pixels are encoded in 32 bits (four channels).

• bits 31 to 24—the alpha channel (not used)

• bits 23 to 16—the red channel

• bits 15 to 8—the green channel

• bits 7 to 0—the blue channel
© National Instruments Corporation 6-69 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

 in

an:

y
you.

otice
ract.
ted
ted
 the
s

lor

e
However this representation is not valid on every 32-bit
micro-processor type. From the memory point of view, the order
depends on the computer.

• On Intel processor-based computers, the memory byte order is
called little endian. The bytes inside a 32-bit word are organized
the following order: blue, green, red, alpha.

• On Apple or Sun computers, the memory byte order is big endi
alpha, red, green, blue.

IMAQ Vision for LabWindows/CVI manages this difference internall
and has functions that make this aspect completely transparent to

A color image always is encoded in memory in the RGB form.
However, there are a number of other coding models such as
Hue, Saturation, and Lightness (HSL) and Hue, Saturation, and
Value (HSV).

To compute the values for hue, saturation, lightness, or value, a
measurement is made from the red, green, and blue components. N
that these measurements take time depending on the values to ext
These extractions are also not completely objective. A color conver
from a color model to another one (i.e. RGB to HSL) and then conver
back to the original model does not have exactly the same value as
original image. This is primarily due to the fact that the image plane
are encoded on 8 bits, which causes some data loss.

The main operations on color images are as follows:

• extract or replace a color image plane (R,G,B,H,S,L,V)

• apply a threshold to a color image based on one of the three co
models (RGB, HSL, or HSV)

• perform a histogram on a color image based on one of the thre
color models (RGB, HSL, or HSV)

The other functions serve as auxiliary functions.
IMAQ Vision for LabWindows/CVI 6-70 © National Instruments Corporation

Chapter 6 Image Processing Functions

e

ne
IPI_ExtractColorPlanes

IPIError = IPI_ExtractColorPlanes (IPIImageRef color_source_image,

IPIImageRef red_hue_plane, IPIImageRef green_sat_plane, IPIImageRef

blue_light_val_plane, IPIColorMode color_mode);

Purpose
This function extracts planes from a color image in RGB, HSV, or HSL mode. It is
possible to extract only the selected planes.

Image type: IPI_PIXEL_RGB32

Image plane type: IPI_PIXEL_U8

Input
color_source_image is the color image from which the color planes are extracted.

red_hue_plane is the first destination image. It contains either the red plane
(color_mode RGB) or the hue plane (color_mode HSL or 2). The corresponding color
plane is not extracted if this parameter is equal to IPI_NOIMAGE .

green_sat_plane is the second destination image. It contains either the green plan
(color mode RGB) or the saturation plane (color mode HSL or 2). The color plane is
not extracted if this parameter is equal to IPI_NOIMAGE .

blue_light_val_plane is the third destination image. It contains either the blue pla
(color_mode RGB), the light plane (color_mode HSL), or the value plane
(color_mode HSV). The color plane is not extracted if this parameter is equal to
IPI_NOIMAGE .

color_mode defines the color mode used for this operation. It can take one of the
following predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value
© National Instruments Corporation 6-71 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ode.

ree

d

is
IPI_ReplaceColorPlanes

IPIError = IPI_ReplaceColorPlanes (IPIImageRef color_source_image,

IPIImageRef color_dest_image, IPIImageRef red_hue_plane,

IPIImageRef green_sat_plane, IPIImageRef blue_light_val_plane,

IPIColorMode color_mode);

Purpose
This function replaces one or more planes in a color image, in RGB, HSL, or HSV m

• If the three plane images are defined, the color_source_image is not necessary,
only the color_dest_image is used.

• If one or two plane images are defined, the color_source_image is necessary.

Note: All source images must have the same size.

Image type: IPI_PIXEL_RGB32 , IPI_PIXEL_U8

Input
color_source_image is the color image, where one or more planes are replaced.

color_dest_image is the resulting color image. This image is not necessary if the th
planes are defined and the color_source_image is not defined.

red_hue_plane is the first source image. It contains either the red plane (color_mode
RGB) or the hue plane (color_mode HSL or HSV). The red or hue plane is not replace
if this parameter is equal to IPI_NOIMAGE .

green_sat_plane is the second source image. It contains either the green plane
(color_mode RGB) or the saturation plane (color_mode HSL or HSV). The green or
saturation plane is not replaced if this parameter is equal to IPI_NOIMAGE .

blue_light_val_plane is the third source image. It contains either the blue plane
(color_mode RGB), the light plane (color_mode HSL), or the value plane
(color_mode HSV). The blue, light, or value plane is not replaced if this parameter
equal to IPI_NOIMAGE .

color_mode defines the color mode used for the operation. It can take one of the
following predefined values:

• IPI_RGB —processing in red, green and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value

IMAQ Vision for LabWindows/CVI 6-72 © National Instruments Corporation

Chapter 6 Image Processing Functions

ane

ight

 of an
IPI_ColorEqualize

IPIError = IPI_ColorEqualize (IPIImageRef color_source_image,

IPIImageRef color_dest_image, int color_equalization);

Purpose
This function equalizes a color image. It works by equalizing either the lightness pl
or the three color planes (red, green, and blue).

Image type: IPI_PIXEL_RGB3HSV

Input
color_source_image is the color image to equalize.

color_dest_image is the resulting color image.

color_equalization equalizes each separate plane if TRUE. It only equalizes the l
plane if FALSE.

IPI_ColorHistogram

IPIError = IPI_ColorHistogram (IPIImageRef color_image, IPIImageRef

mask_image, int number_of_classes, IPIColorMode color_mode, int

red_hue_histogram[], int green_sat_histogram[], int

blue_light_val_histogram[], IPIHistoReport *red_hue_report,

IPIHistoReport *green_sat_report, IPIHistoReport

*blue_light_val_report);

Purpose
This function computes and displays the histograms extracted from the three planes
image. It works in RGB, HSL, or HSV mode.

The three histogram reports contain the following elements:

• minimalValue —lower pixel value found in the calculated area

• maximalValue —higher pixel value found in the calculated area

• startingValue —always equal to 0

• interval —width of each class

• meanValue —mean value of the pixel values in the calculated area
© National Instruments Corporation 6-73 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

 the

the
e the

ber

ram.

ot

r
 a
• stdDeviation —standard deviation of the pixel values in the calculated area.
Values are distributed better in the histogram and the corresponding image as
stdDeviation increases.

• area —number of pixels used in the histogram calculation. This is influenced by
contents of mask_image .

Image type: IPI_PIXEL_RGB32

Mask type: IPI_PIXEL_U8

Input
color_image is the color image used to compute the histogram.

mask_image indicates the region to use for computing the histogram. Only pixels in
original image that correspond to a non-NULL pixel in the mask are used to comput
histogram. A histogram on the complete image occurs if mask_image is equal to
IPI_NOMASK.

number_of_classes indicates the number of classes of the histograms (i.e. the num
of elements of each histogram array).

color_mode defines the color mode used for the operation. It can take one of the
following predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value

Output
red_hue_histogram returns the red (color_mode RGB) or the hue (color_mode HSL)
histogram values in an array. It can be a NULL pointer if you do not need this histog

green_sat_histogram returns the green (color_mode RGB) or the saturation
(color_mode HSL) histogram values in an array. It can be a NULL pointer if you do n
need this histogram.

blue_light_val_histogram returns the blue (color mode RGB), the lightness (colo
mode HSL), or the value (color mode HSV) histogram values in an array. It can be
NULL pointer if you do not need this histogram.

red_hue_report is a structure filled with detailed statistics from the histogram
calculated on the red or the hue plane (depending on the color_mode). It can be a NULL
pointer if you do not need this report.
IMAQ Vision for LabWindows/CVI 6-74 © National Instruments Corporation

Chapter 6 Image Processing Functions

m

lt into

l
green_sat_report is a structure filled with detailed statistics from the histogram
calculated on the green or the saturation plane (depending on the color_mode). It can be
a NULL pointer if you do not need this report.

blue_light_val_report is a structure filled with detailed statistics from a histogra
calculated on the blue, the lightness, or the value plane (depending on the color_mode).
It can be a NULL pointer if you do not need this report.

IPI_ColorThreshold

IPIError = IPI_ColorThreshold (IPIImageRef color_source_image,

IPIImageRef dest_image, IPIColorMode color_mode, float new_value,

float red_hue_min_value, float red_hue_max_value, float

green_sat_min_value, float green_sat_max_value, float

blue_light_val_min_value, float blue_light_val_max_value);

Purpose
This function applies a threshold to the three planes of an image and places the resu
an 8-bit image.

The function tests each range (red_hue range, green_sat range, and blue_light_val
range, as defined by min_value and max_value) to determine if the corresponding pixe
from the color_source_image is set to the value in new_value . If a pixel from the
color_source_image does not have a value indicated in all three ranges, the
corresponding pixel is set to 0 in dest_image .

Image type: IPI_PIXEL_RGB32 , IPI_PIXEL_U8

Input
color_source_image is the color image to apply a threshold to.

dest_image is the resulting image.

color_mode defines the color mode used for the operation. It can take one of the
following predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value

new_value indicates the value assigned to pixels in dest_image when the
corresponding pixels from the color_source_image have values within all three
ranges.
© National Instruments Corporation 6-75 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

on

r

r

 in
d (if
Any pixel values not included in the defined range are reset to zero in the destinati
image.

The pixel values included in these ranges are set to the value indicated in new_value .

red_hue_min_value is the lower limit of the range in the red or the hue plane.

red_hue_max_value is the higher limit of the range in the red or the hue plane.

green_sat_min_value is the lower limit of the range in the green or the saturation
plane.

green_sat_max_value is the higher limit of the range in the green or the saturation
plane.

blue_light_val_min_value is the lower limit of the range in the blue or the light o
the value plane.

blue_light_val_max_value is the higher limit of the range in the blue or the light o
the value plane.

IPI_ColorUserLookup

IPIError = IPI_ColorUserLookup (IPIImageRef color_source_image,

IPIImageRef mask_image, IPIImageRef color_dest_image, PIColorMode

color_mode, int lookup_format, void *red_hue_lookup, void

*green_sat_lookup, void *blue_light_val_lookup);

Purpose
This function applies a lookup table (LUT) to each color plane.

Image type: IPI_PIXEL_RGB32

Mask type: IPI_PIXEL_U8

Input
color_source_image is the color image on which the LUT is applied.

mask_image indicates the region in the image where the LUT is applied. Only pixels
the original image that correspond to the equivalent pixel in the mask are processe
the value in the mask is not 0). A LUT on the complete image occurs if mask_image is
equal to IPI_NOMASK.

color_dest_image is the resulting color image.
IMAQ Vision for LabWindows/CVI 6-76 © National Instruments Corporation

Chapter 6 Image Processing Functions

ing

g

ss

ss

he
ss

color_mode defines the color mode used for the operation. It can be one of the follow
predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value

lookup_format indicates the data type of the lookup table using one of the followin
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

red_hue_lookup is the LUT to apply to the first color plane (depending on the
color_mode). This array can contain up to 256 elements. It is filled automatically if le
than 256 elements are indicated.

green_sat_lookup is the LUT to apply to the second color plane (depending on the
color_mode). This array can contain up to 256 elements. It is filled automatically if le
than 256 elements are indicated.

blue_light_val_lookup is the LUT to apply to the third color plane (depending on t
color_mode). This array can contain up to 256 elements. It is filled automatically if le
than 256 elements are indicated.

The automatic LUT filling leaves all pixels with their original values. If the lookup is
equal to NULL, this array is empty and no replacement occurs on the plane.
© National Instruments Corporation 6-77 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions
IPI_GetColorPixel

IPIError = IPI_GetColorPixel (IPIImageRef color_image, int

x_coordinate, int y_coordinate, int *rgb_color_value);

Purpose
This function reads the pixel value from a color image.

Image type: IPI_PIXEL_RGB32

Input
color_image is the color image from which you can get color pixel values.

x_coordinate is the horizontal position of the pixel.

y_coordinate is the vertical position of the pixel.

Output
rgb_color_value returns the color pixel value.

IPI_SetColorPixel

IPIError = IPI_SetColorPixel (IPIImageRef color_image, int

x_coordinate, int y_coordinate, int rgb_color_value);

Purpose
This function changes the pixel value of a color image.

Image type: IPI_PIXEL_RGB32

Input
color_image is the color image where the new color pixel value is written.

x_coordinate is the horizontal position of the pixel.

y_coordinate is the vertical position of the pixel.

rgb_color_value indicates the new color pixel value.
IMAQ Vision for LabWindows/CVI 6-78 © National Instruments Corporation

Chapter 6 Image Processing Functions

int.

ents

re
IPI_GetColorLine

IPIError = IPI_GetColorLine (IPIImageRef color_image, Point start,

Point end, int color_array[], int *nb_of_elements);

Purpose
This function reads a line of pixels from a color image into an array and returns the
number of elements in this array. The line is defined by a start point and an end po

Image type: IPI_PIXEL_RGB32

Input
color_image is the color image where the line is read.

start is the start point of the line of pixels.

end is the end point of the line of pixels.

Output
color_array is an array allocated by you. It must be big enough to contain all elem
of the line.

nb_of_elements returns the number of elements in the array.

IPI_SetColorLine

IPIError = IPI_SetColorLine (IPIImageRef color_image, Point start,

Point end, int color_array[], int nb_of_elements);

Purpose
This function writes a line of pixels in a color image. The new values of the pixels a
contained in a color array defined by you.

Image type: IPI_PIXEL_RGB32

Input
color_image is the color image where the line is written.

start is the start point of the line of pixels.

end is the end point of the line of pixels.
© National Instruments Corporation 6-79 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

rray.

e to
er is

ed
color_array is the allocated array containing the new color pixel values. They are
copied to the image.

nb_of_elements indicates the number of pixels of the array.

Note: If the line defined by start and end is longer than nb_of_elements , it is
shortened. That is, only the pixels defined by nb_of_elements are copied.
If the line is shorter, the array is not entirely written to the image.

IPI_ColorImageToArray

IPIError = IPI_ColorImageToArray (IPIImageRef color_image, Rect

rectangle, int color_array[], int *array_x_size, int

*array_y_size);

Purpose
This function extracts a pixel array from a color image and returns the size of this a

Image type: IPI_PIXEL_RGB32

Input
color_image is the source color image.

rectangle is a Rect structure containing the coordinates and the size of the rectangl
extract from the image. The operation is applied to the entire image if this paramet
equal to IPI_FULL_RECT . The rectangle is defined by a buffer of integers allocated
by you.

Output
color_array is an array allocated by you. It must be big enough to contain all copi
elements of the rectangle.

array_x_size returns the horizontal number of elements in the color array.

array_y_size returns the vertical number of elements in the color array.

IMAQ Vision for LabWindows/CVI 6-80 © National Instruments Corporation

Chapter 6 Image Processing Functions

y

 any
IPI_ArrayToColorImage

IPIError = IPI_ArrayToColorImage (IPIImageRef color_image, int

color_array[], int array_x_size, int array_y_size);

Purpose
This function replaces the pixels of a color image with pixels defined in a color arra
allocated by you.

Image type: IPI_PIXEL_RGB32

Input
color_image is the color image to modify. The resulting image is resized to
array_x_size and array_y_size.

color_array is the allocated array.

array_x_size indicates the horizontal size of the pixels array.

array_y_size indicates the vertical size of the pixels array.

IPI_ColorConversion

IPIError = IPI_ColorConversion (IPIColorMode src_color_mode,

unsigned char src_red_hue, unsigned char src_grn_sat, unsigned char

src_blu_light_val, IPIColorMode dst_color_mode, unsigned char

*dst_red_hue, unsigned char *dst_grn_sat, unsigned char

*dst_blu_light_val);

Purpose
This function converts the color pixel values from one color mode to another.

Input
src_color_mode defines the source color mode used for the operation. It can take
one of the following predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value

src_red_hue is the red or hue source value of the pixel.
© National Instruments Corporation 6-81 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

 one

any
src_grn_sat is the green or sat source value of the pixel.

src_blu_light_val is the blue or light or val source value of the pixel.

dst_color_mode defines the destination color mode used for the operation. It can be
of the following predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value

Output
dst_red_hue points to the value of the red or hue of the color pixel.

dst_grn_sat points to the value of the green or sat of the color pixel.

dst_blu_light_val points to the value of the blue, light, or val of the color pixel.

IPI_IntegerToColor

IPIError = IPI_IntegerToColor(int source_integer_array[], int

nb_of_elements, IPIColorMode dst_color_mode, int

dests_array_format, void *dst_red_hue_array, void

*dst_grn_sat_array, void *dst_blu_light_val_array);

Purpose
This function converts an array of integers into a color array.

Input
source_integer_array is the array of integers.

nb_of_elements indicates the number of pixels of the color array.

dst_color_mode defines the source color mode used for the operation. It can take
one of the following predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value
IMAQ Vision for LabWindows/CVI 6-82 © National Instruments Corporation

Chapter 6 Image Processing Functions
dests_array_format indicates the data type of the output arrays using one of the
following LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

dst_red_hue_array points to the red or hue color array.

dst_grn_sat_array points to the green or saturation color array.

dst_blu_light_val_array points to the blue, light, or value color array.

IPI_ColorToInteger

IPIError = IPI_ColorToInteger (void *source_red_hue_array, void

*source_grn_sat_array, void *source_blu_light_val_array, int

nb_of_elements, IPIColorMode source_color_mode, int

sources_array_format, int dest_integer_array[]);

Purpose
This function converts a pixel color array into an array of integers.

Input
source_red_hue_array is the red or hue source color array.

source_grn_sat_array is the green or saturation source color array.

source_blu_light_val_array is the blue, light, or value source color array.

nb_of_elements indicates the number of pixels in the array of integers.
© National Instruments Corporation 6-83 IMAQ Vision for LabWindows/CVI

Chapter 6 Image Processing Functions

ke

ng

 to
source_color_mode defines the source color mode used for the operation. It can ta
any one of the following predefined values:

• IPI_RGB —processing in red, green, and blue

• IPI_HSL —processing in hue, saturation, and light

• IPI_HSV —processing in hue, saturation, and value

sources_array_format indicates the data type of the arrays using one of the followi
LabWindows standard values:

• VAL_CHAR—character

• VAL_SHORT_INTEGER—short integer

• VAL_INTEGER—integer

• VAL_FLOAT—floating point

• VAL_DOUBLE—double-precision

• VAL_UNSIGNED_SHORT_INTEGER—unsigned short integer

• VAL_UNSIGNED_INTEGER—unsigned integer

• VAL_UNSIGNED_CHAR—unsigned character

dest_integer_array is an array of integers allocated by you. It must be big enough
contain all elements of the source array.
IMAQ Vision for LabWindows/CVI 6-84 © National Instruments Corporation

© National Instruments Corporation A-1 IMAQ Visio
Appendix

A
Customer Communication
ssary
ct
orm

o

ms to

e or
ese

chnical

n of
an also
ctions

 (512)

For your convenience, this appendix contains forms to help you gather the information nece
to help us solve your technical problems and a form you can use to comment on the produ
documentation. When you contact us, we need the information on the Technical Support F
and the configuration form, if your manual contains one, about your system configuration t
answer your questions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone syste
quickly provide the information you need. Our electronic services include a bulletin board
service, an FTP site, a fax-on-demand system, and e-mail support. If you have a hardwar
software problem, first try the electronic support systems. If the information available on th
systems does not answer your questions, we offer fax and telephone support through our te
support centers, which are staffed by applications engineers.

Electronic Services

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collectio
files and documents to answer most common customer questions. From these sites, you c
download the latest instrument drivers, updates, and example programs. For recorded instru
on how to use the bulletin board and FTP services and for BBS automated information, call
795-6990. You can access these services at:

United States: (512) 794-5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and use
your Internet address, such as joesmith@anywhere.com , as your password. The support files
and documents are located in the /support directories.

Bulletin Board Support

FTP Support
n for LabWindows/CVI

 on a

-mail
number

nical

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents
wide range of technical information. You can access Fax-on-Demand from a touch-tone
telephone at (512) 418-1111.

You can submit technical support questions to the applications engineering team through e
at the Internet address listed below. Remember to include your name, address, and phone
so we can contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support
National Instruments has branch offices all over the world. Use the list below to find the tech
support number for your country. If there is no National Instruments office in your country,
contact the source from which you purchased your software to obtain support.

Telephone Fax
Australia 02 9874 4100 02 9874 4455
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 905 785 0085 905 785 0086
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 527 2321 09 502 2930
France 01 48 14 24 24 01 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 5734815 03 5734816
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5 520 2635 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Fax-On-Demand Support

E-Mail Support (currently U.S. only)

re, and
ting

blem,
sary.

__

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardwa
use the completed copy of this form as a reference for your current configuration. Comple
this form accurately before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this pro
include the configuration forms from their user manuals. Include additional pages if neces

Name __

Company ___

Address __

Fax (___)___________________ Phone (___) ___________________________________

Computer brand ________________ Model ________________ Processor_______________

Operating system (include version number) __

Clock speed ______ MHz RAM _____ MB Display adapter ________________________

Mouse ___ yes ___ no Other adapters installed __________________________________

Hard disk capacity _____ MB Brand __

Instruments used ___

National Instruments hardware product model __________ Revision ___________________

Configuration ___

National Instruments software product ____________________________ Version _________

Configuration ___

The problem is: __

List any error messages: ___

The following steps reproduce the problem:__

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our
products. This information helps us provide quality products to meet your needs.

Title: IMAQ™ Vision for LabWindows®/CVI™

Edition Date: February 1997

Part Number: 321424A-01

Please comment on the completeness, clarity, and organization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.

Name ___

Title __

Company ___

Address __

Phone (___)__________________________ Fax (___) ____________________________

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway (512) 794-5678
Austin, TX 78730-5039

© National Instruments Corporation I-1 IMAQ Vision
Index
A
analysis functions

description (table), 2-4
IPI_BasicParticle, 6-48 to 6-49
IPI_Centroid, 6-46 to 6-47
IPI_Histogram, 2-13 to 2-14, 6-43 to 6-45
IPI_LineProfile, 6-47 to 6-48
IPI_Particle, 6-49 to 6-50
IPI_ParticleCoeffs, 6-51 to 6-53
IPI_ParticleDiscrim, 6-53 to 6-54
IPI_Quantify, 6-45 to 6-46

arithmetic operators
description (table), 2-5
IPI_Add, 6-1 to 6-2
IPI_Divide, 6-4
IPI_Modulo, 6-5 to 6-6
IPI_MulDiv, 6-6
IPI_Multiply, 6-3
IPI_Subtract, 6-2

B
bulletin board support, A-1

C
calibration attribute, 2-3
color functions

description (table), 2-4
IPI_ArrayToColorImage, 6-81
IPI_ColorConversion, 6-81 to 6-82
IPI_ColorEqualize, 6-73
IPI_ColorHistogram, 6-73 to 6-75
IPI_ColorImageToArray, 6-80
IPI_ColorThreshold, 6-75 to 6-76
IPI_ColorToInteger, 6-83 to 6-84

IPI_ColorUserLookup, 6-76 to 6-77
IPI_ExtractColorPlanes, 6-71
IPI_GetColorLine, 6-79
IPI_GetColorPixel, 6-78
IPI_IntegerToColor, 6-82 to 6-83
IPI_ReplaceColorPlanes, 6-72
IPI_SetColorLine, 6-79 to 6-80
IPI_SetColorPixel, 6-78
overview, 6-69 to 6-70

color image planes, 2-1
complex functions

description (table), 2-4
IPI_ArrayToComplexImage, 6-66 to 6-67
IPI_ArrayToComplexPlane, 6-68
IPI_ComplexAdd, 6-62 to 6-63
IPI_ComplexAttenuate, 6-61
IPI_ComplexConjugate, 6-60
IPI_ComplexDivide, 6-65 to 6-66
IPI_ComplexFlipFrequency, 6-61
IPI_ComplexImageToArray, 6-66
IPI_ComplexMultiply, 6-64 to 6-65
IPI_ComplexPlaneToArray, 6-67
IPI_ComplexSubtract, 6-63 to 6-64
IPI_ComplexTruncate, 6-62
IPI_ExtractComplexPlane, 6-68 to 6-69
IPI_FFT, 6-59
IPI_InverseFFT, 6-60
IPI_ReplaceComplexPlane, 6-69

complex images, 2-1
connectivity processing, 2-9
conversion functions

description (table), 2-4
IPI_Cast, 5-19
IPI_Convert, 5-18
IPI_ConvertByLookup, 5-19 to 5-20

customer communication, xii, A-1 to A-2
 for LabWindows/CVI

Index
D
dest_image parameter, 2-6 to 2-7
display basics functions

IPI_GetWindow2DAttributes, 4-6
IPI_GetWindowAttribute, 4-5 to 4-6
IPI_SetWindow2DAttributes, 4-5
IPI_SetWindowAttributes, 4-4 to 4-5
IPI_WindClose, 4-7 to 4-8
IPI_WindDraw, 4-2 to 4-3
IPI_WSetPalette, 4-3

display functions. See also regions of interest
functions.

description (table), 2-4
features and overview, 4-1 to 4-2
LabWindows toolbox required (note), 4-2

display tools functions
IPI_GetActiveTool, 4-11
IPI_GetLastEvent, 4-12 to 4-14
IPI_GetLastWEvent, 4-15
IPI_GetWindToolsAttribute, 4-10
IPI_InstallWCallback, 4-12
IPI_RemoveWCallback, 4-12
IPI_SetActiveTool, 4-10 to 4-11
IPI_SetWindToolsAttribute, 4-9 to 4-10
IPI_WindToolsClose, 4-11
IPI_WindToolsSetup, 4-8 to 4-9

documentation
conventions used in manual, xii
organization of manual, xi-xii

E
electronic support services, A-1 to A-2
e-mail support, A-2
error functions. See management functions.
event/tool coordinates (table), 4-13 to 4-14

F
fax and telephone support, A-2
Fax-On-Demand support, A-2

file functions
description (table), 2-4
IPI_GetFileInfo, 4-20 to 4-21
IPI_ReadFile, 4-19
IPI_WriteFile, 4-20

filter functions
description (table), 2-4
IPI_Convolute, 6-28 to 6-29
IPI_GetConvolutionMatrix, 6-21 to 6-28
IPI_GrayEdge, 6-30
IPI_LowPass, 6-31
IPI_NthOrder, 6-32 to 6-33
overview, 6-20 to 6-21
processing image with mask_image

parameter, 2-7
frequency processing, 6-58 to 6-59. See also

complex functions.
FTP support, A-1

G
geometry functions

description (table), 2-4
IPI_3DView, 6-55 to 6-56
IPI_Rotate, 6-56
IPI_Shift, 6-57
IPI_Symmetry, 6-57 to 6-58

H
hexagonal pixel frame, 2-11
hexaProcessing field, 2-11 to 2-12

I
image processing functions

description (table), 2-5
IPI_AutoBThreshold, 6-14 to 6-15
IPI_AutoMThreshold, 6-15 to 6-16
IPI_Equalize, 6-19 to 6-20
IPI_Label, 6-11 to 6-12
IPI_MathLookup, 6-17 to 6-18
IPI_MultiThreshold, 6-13 to 6-14
IMAQ Vision for LabWindows/CVI I-2 © National Instruments Corporation

Index
IPI_Threshold, 6-12 to 6-13
IPI_UserLookup, 6-18 to 6-19

image references, 2-6
image types for IMAQ Vision functions

(table), 2-2
images, 2-1 to 2-3

calibration attribute, 2-3
definition, 2-1
factors affecting encoding, 2-1
image border attribute, 2-3
planes, 2-1
types of images, 2-1 to 2-2

Imaginary plane, 2-1
IMAQ Vision for LabWindows/CVI

files added to LabWindows/CVI
directory, 2-3

function types (table), 2-4 to 2-5
getting started, 2-15
image concepts, 2-1 to 2-3
overview, 2-3 to 2-5
processing options, 2-9 to 2-12
samples files and directories, 2-15
source, destination, and mask images,

2-5 to 2-8
user pointers and IMAQ Vision pointers,

2-12 to 2-14
IMAQ_CVI.FP file, 2-3
IMAQ_CVI.H file, 2-3
IMAQ_CVI.LIB file, 2-3
initializing IMAQ Vision internal tables, 2-5
installation of IMAQ Vision

files added to LabWindows/CVI
directory, 2-3 to 2-4

procedure, 1-2
IPI_3DView function, 6-55 to 6-56
IPI_Add function

purpose and use, 6-1 to 6-2
source_image and dest_image parameter

example, 2-8
IPI_And function, 6-7
IPI_ArrayToColorImage function, 6-81
IPI_ArrayToComplexImage function,

6-66 to 6-67

IPI_ArrayToComplexPlane function, 6-68
IPI_ArrayToImage function, 5-13
IPI_AutoBThreshold function, 6-14 to 6-15
IPI_AutoMThreshold function, 6-15 to 6-16
IPI_BasicParticle function, 6-48 to 6-49
IPI_Cast function, 5-19
IPI_Centroid function, 6-46 to 6-47
IPI_Circles function, 6-36 to 6-37
IPI_ClearWROI function, 4-17
IPI_CloseSys function, 3-4
IPI_ColorConversion function, 6-81 to 6-82
IPI_ColorEqualize function, 6-73
IPI_ColorHistogram function, 6-73 to 6-75
IPI_ColorImageToArray function, 6-80
IPI_ColorThreshold function, 6-75 to 6-76
IPI_ColorToInteger function, 6-83 to 6-84
IPI_ColorUserLookup function, 6-76 to 6-77
IPI_Compare function, 6-10
IPI_ComplexAdd function, 6-62 to 6-63
IPI_ComplexAttenuate function, 6-61
IPI_ComplexConjugate function, 6-60
IPI_ComplexDivide function, 6-65 to 6-66
IPI_ComplexFlipFrequency function, 6-61
IPI_ComplexImageToArray function, 6-66
IPI_ComplexMultiply function, 6-64 to 6-65
IPI_ComplexPlaneToArray function, 6-67
IPI_ComplexSubtract function, 6-63 to 6-64
IPI_ComplexTruncate function, 6-62
IPI_Convert function, 5-18
IPI_ConvertByLookup function, 5-19 to 5-20
IPI_Convex function, 6-37 to 6-38
IPI_Convolute function, 6-28 to 6-29
IPI_Copy function, 5-6
IPI_Create function

initializing IMAQ Vision internal
tables, 2-5

purpose and use, 3-1 to 3-2
IPI_Danielsson function, 6-38
IPI_Dispose function, 3-2
IPI_Distance function, 6-38 to 6-39
IPI_Divide function, 6-4
IPI_DrawLine function, 5-14 to 5-15
IPI_DrawOval function, 5-16
© National Instruments Corporation I-3 IMAQ Vision for LabWindows/CVI

Index
IPI_DrawRect function, 5-15
IPI_Equalize function, 6-19 to 6-20
IPI_Expand function, 5-4
IPI_Extract function, 5-4 to 5-5
IPI_ExtractColorPlanes function, 6-71
IPI_ExtractComplexPlane function,

6-68 to 6-69
IPI_FFT function, 6-59
IPI_FillHole function, 6-40
IPI_FreeROI function, 4-18
IPI_GetActiveTool function, 4-11
IPI_GetColorLine function, 6-79
IPI_GetColorPixel function, 6-78
IPI_GetConvolutionMatrix function,

6-21 to 6-28
Gaussian 3x3 (table), 6-27
Gaussian 5x5 (table), 6-28
Gaussian 7x7 (table), 6-28
gradient 3x3 (table), 6-23
gradient 5x5 (table), 6-24
gradient 7x7 (table), 6-25
input, 6-22
Laplacian 3x3 (table), 6-25
Laplacian 5x5 (table), 6-26
Laplacian 7x7 (table), 6-26
purpose, 6-21 to 6-22
smoothing 3x3 (table), 6-26
smoothing 5x5 (table), 6-27
smoothing 7x7 (table), 6-27

IPI_GetErrorMode function, 3-3
IPI_GetFileInfo function, 4-20 to 4-21
IPI_GetImageInfo function, 5-1 to 5-2
IPI_GetLastError function, 3-3
IPI_GetLastEvent function, 4-12 to 4-14

event/tool coordinates (table),
4-13 to 4-14

output, 4-13
purpose, 4-12

IPI_GetLastWEvent function, 4-15
IPI_GetLine function

purpose and use, 5-10
user pointers example, 2-12 to 2-13

IPI_GetPixelAddress function, 5-14
IPI_GetPixelValue function, 5-7
IPI_GetRowCol function, 5-8
IPI_GetWindow2DAttributes function, 4-6
IPI_GetWindowAttribute function, 4-5 to 4-6
IPI_GetWindToolsAttribute function, 4-10
IPI_GetWROI function, 4-16
IPI_GrayEdge function

purpose and use, 6-30
source_image, mask_image, and

dest_image parameter (example), 2-7
IPI_GrayMorphology function, 6-35 to 6-36
IPI_Histogram function

pointer example, 2-13 to 2-14
purpose and use, 6-43 to 6-45

IPI_ImageOffset function, 5-3 to 5-4
IPI_ImageToArray function, 5-12
IPI_ImageToImage function, 5-6
IPI_InitSys function

initializing IMAQ Vision internal
tables, 2-5

purpose and use, 3-1
IPI_InstallWCallback function, 4-12
IPI_IntegerToColor function, 6-82 to 6-83
IPI_InverseFFT function, 6-60
IPI_Label function, 6-11 to 6-12
IPI_LineProfile function, 6-47 to 6-48
IPI_LogDiff function, 6-11
IPI_LowHighPass function, 6-40 to 6-41
IPI_LowPass function, 6-31
IPI_MagicWand function, 5-17
IPI_Mask function, 6-9
IPI_MaskToROI function, 4-18
IPI_MathLookup function, 6-17 to 6-18
IPI_Modulo function, 6-5 to 6-6
IPI_Morphology function, 6-34 to 6-35
IPI_MO_STD3X3 pointer, 2-12B
IPI_MO_STD5X5 pointer, 2-12B
IPI_MO_STD7X7 pointer, 2-12B
IPI_MulDiv function, 6-6
IPI_Multiply function, 6-3
IPI_MultiThreshold function, 6-13 to 6-14
IPI_NOMASK keyword, 2-6
IMAQ Vision for LabWindows/CVI I-4 © National Instruments Corporation

Index
IPI_NthOrder function, 6-32 to 6-33
IPI_Or function, 6-8
IPI_Particle function, 6-49 to 6-50
IPI_ParticleCoeffs function, 6-51 to 6-53
IPI_PIXEL_COMPLEX value (table), 2-2
IPI_PIXEL_I16 value (table), 2-2
IPI_PIXEL_RGB value (table), 2-2
IPI_PIXEL_SG value (table), 2-2
IPI_PIXEL_U8 value (table), 2-2
IPI_ProcessError function, 3-4
IPI_Quantify function, 6-45 to 6-46
IPI_ReadFile function, 4-19
IPI_RejectBorder function, 6-41 to 6-42
IPI_RemoveWCallback function, 4-12
IPI_ReplaceColorPlanes function, 6-72
IPI_ReplaceComplexPlane function, 6-69
IPI_Resample function, 5-5
IPI_ROIToMask function, 4-17 to 4-18
IPI_Rotate function, 6-56
IPI_Segmentation function, 6-42
IPI_Separation function, 6-39 to 6-40
IPI_SetActiveTool function, 4-10 to 4-11
IPI_SetColorLine function, 6-79 to 6-80
IPI_SetColorPixel function, 6-78
IPI_SetErrorMode function, 3-3
IPI_SetImageCalibration function, 5-2 to 5-3
IPI_SetImageSize function, 5-2
IPI_SetLine function, 5-11
IPI_SetPixelValue function, 5-7
IPI_SetRowCol function, 5-9
IPI_SetWindow2DAttributes function, 4-5
IPI_SetWindowAttributes function, 4-4 to 4-5
IPI_SetWindToolsAttribute function,

4-9 to 4-10
IPI_SetWROI function, 4-16
IPI_Shift function, 6-57
IPI_Skeleton function, 6-42 to 6-43
IPI_Subtract function, 6-2
IPI_Symmetry function, 6-57 to 6-58
IPI_Threshold function

purpose and use, 6-12 to 6-13
source_image and dest_image parameter

example, 2-7

IPI_UserLookup function, 6-18 to 6-19
IPI_WindClose function, 4-7 to 4-8
IPI_WindDraw function, 4-2 to 4-3
IPI_WindToolsClose function, 4-11
IPI_WindToolsSetup function, 4-8 to 4-9
IPI_WriteFile function, 4-20
IPI_WSetPalette function, 4-3
IPI_Xor function, 6-8 to 6-9

L
logic operators

description (table), 2-5
IPI_And, 6-7
IPI_Compare, 6-10
IPI_LogDiff, 6-11
IPI_Mask, 6-9
IPI_Or, 6-8
IPI_Xor, 6-8 to 6-9

M
management functions

description (table), 2-4
IPI_CloseSys, 3-4
IPI_Create, 2-5, 3-1 to 3-2
IPI_Dispose, 3-2
IPI_GetErrorMode, 3-3
IPI_GetLastError, 3-3
IPI_InitSys, 3-1
IPI_ProcessError, 3-4
IPI_SetErrorMode, 3-3

manual. See documentation.
mask_image parameter

definition, 2-6
processing by linear filters, 2-7

MorphoDescPtr functions, 2-12
morphology functions

description (table), 2-4
IPI_Circles, 6-36 to 6-37
IPI_Convex, 6-37 to 6-38
IPI_Danielsson, 6-38
IPI_Distance, 6-38 to 6-39
© National Instruments Corporation I-5 IMAQ Vision for LabWindows/CVI

Index
IPI_FillHole, 6-40
IPI_GrayMorphology, 6-35 to 6-36
IPI_LowHighPass, 6-40 to 6-41
IPI_Morphology, 6-34 to 6-35
IPI_RejectBorder, 6-41 to 6-42
IPI_Segmentation, 6-42
IPI_Separation, 6-39 to 6-40
IPI_Skeleton, 6-42 to 6-43
morphological transformations,

6-33 to 6-34
overview, 6-33 to 6-34

O
operator functions. See arithmetic operators;

logic operators.

P
pixel frames, 2-11
planes, in images, 2-1
pointers

IPI_GetLine function, 2-12 to 2-13
IPI_Histogram function, 2-13 to 2-14
user pointers and IMAQ Vision pointers,

2-12 to 2-14
processing functions. See image processing

functions.
processing options, 2-9 to 2-12

connectivity, 2-9
hexaProcessing field, 2-11 to 2-12
structuring element descriptor, 2-10

R
Real plane, 2-1
regions of interest functions

IPI_ClearWROI, 4-17
IPI_FreeROI, 4-18
IPI_GetWROI, 4-16
IPI_MaskToROI, 4-18
IPI_ROIToMask, 4-17 to 4-18

IPI_SetWROI, 4-16
overview, 4-15 to 4-16

RGB Chunky image type, 2-1

S
source_image parameter, 2-6 to 2-7
square pixel frame, 2-11
starting with IMAQ Vision, 2-15
structuring element descriptor, 2-10
system setup and operation

installation, 1-2
system requirements, 1-1

T
technical support services, A-1 to A-2
telephone and fax support, A-2
tools diverse functions

description (table), 2-5
IPI_DrawLine, 5-14 to 5-15
IPI_DrawOval, 5-16
IPI_DrawRect, 5-15
IPI_MagicWand, 5-17

tools for display. See display tools functions.
tools image functions

description (table), 2-5
IPI_ArrayToImage, 5-13
IPI_Copy, 5-6
IPI_Expand, 5-4
IPI_Extract, 5-4 to 5-5
IPI_GetImageInfo, 5-1 to 5-2
IPI_GetLine, 2-12 to 2-13, 5-10
IPI_GetPixelAddress, 5-14
IPI_GetPixelValue, 5-7
IPI_GetRowCol, 5-8
IPI_ImageToArray, 5-12
IPI_ImageToImage, 5-6
IPI_Resample, 5-5
IPI_SetImageCalibration, 5-2 to 5-3
IPI_SetImageOffset, 5-3 to 5-4
IPI_SetImageSize, 5-2
IPI_SetLine, 5-11
IMAQ Vision for LabWindows/CVI I-6 © National Instruments Corporation

Index
IPI_SetPixelValue, 5-7
IPI_SetRowCol, 5-9

U
user pointers and IMAQ Vision pointers,

2-12 to 2-14

W
windows functions. See display basics

functions; display tools functions.
© National Instruments Corporation I-7 IMAQ Vision for LabWindows/CVI

	IMAQ™ Vision for LabWindows®/CVI™
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (U.S.)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of Nati...

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Customer Communication

	Chapter 1 Introduction
	System Set Up and Operation
	System Requirements
	Installation

	Chapter 2 Basic Concepts
	About Images
	Overview
	Source, Destination, and Mask Images
	Processing Options
	Connectivity
	Structuring Element Descriptor
	The hexaProcessing Field

	User Pointers and IMAQ Vision for LabWindows/CVI Pointers
	IPI_GetLine
	IPI_Histogram()

	Starting with IMAQ Vision for LabWindows/CVI

	Chapter 3 Management Functions
	IPI_InitSys
	IPI_Create
	IPI_Dispose
	IPI_SetErrorMode
	IPI_GetErrorMode
	IPI_GetLastError
	IPI_ProcessError
	IPI_CloseSys

	Chapter 4 Display and File Functions
	Display
	Display Basics
	IPI WindDraw
	IPI_WSetPalette
	IPI_SetWindowAttributes
	IPI_SetWindow2DAttributes
	IPI_GetWindowAttribute
	IPI_GetWindow2DAttributes
	IPI_WindClose

	Display Tools
	IPI_WindToolsSetup
	IPI_SetWindToolsAttribute
	IPI_GetWindToolsAttribute
	IPI_SetActiveTool
	IPI_GetActiveTool
	IPI_WindToolsClose
	IPI_InstallWCallback
	IPI_RemoveWCallback
	IPI_GetLastEvent
	IPI_GetLastWEvent

	Regions of Interest
	IPI_SetWROI
	IPI_GetWROI
	IPI_ClearWROI
	IPI_ROIToMask
	IPI_MaskToROI
	IPI_FreeROI

	Files
	IPI_ReadFile
	IPI_WriteFile
	IPI_GetFileInfo

	Chapter 5 Tools Functions
	Tools Image
	IPI_GetImageInfo
	IPI_SetImageSize
	IPI_SetImageCalibration
	IPI_SetImageOffset
	IPI_Expand
	IPI_Extract
	IPI_Resample
	IPI_Copy
	IPI_ImageToImage
	IPI_GetPixelValue
	IPI_SetPixelValue
	IPI_GetRowCol
	IPI_SetRowCol
	IPI_GetLine
	IPI_SetLine
	IPI_ImageToArray
	IPI_ArrayToImage
	IPI_GetPixelAddress

	Tools Diverse
	IPI_DrawLine
	IPI_DrawRect
	IPI_DrawOval
	IPI_MagicWand

	Conversion
	IPI_Convert
	IPI_Cast
	IPI_ConvertByLookup

	Chapter 6 Image Processing Functions
	Arithmetic Operators
	IPI_Add
	IPI_Subtract
	IPI_Multiply
	IPI_Divide
	IPI_Modulo
	IPI_MulDiv

	Logic Operators
	IPI_And
	IPI_Or
	IPI_Xor
	IPI_Mask
	IPI_Compare
	IPI_LogDiff

	Processing
	IPI_Label
	IPI_Threshold
	IPI_MultiThreshold
	IPI_AutoBThreshold
	IPI_AutoMThreshold
	IPI_MathLookup
	IPI_UserLookup
	IPI_Equalize

	Filters
	IPI_GetConvolutionMatrix
	IPI_Convolute
	IPI_GrayEdge
	IPI_LowPass
	IPI_NthOrder

	Morphology
	IPI_Morphology
	IPI_GrayMorphology
	IPI_Circles
	IPI_Convex
	IPI_Danielsson
	IPI_Distance
	IPI_Separation
	IPI_FillHole
	IPI_LowHighPass
	IPI_RejectBorder
	IPI_Segmentation
	IPI_Skeleton

	Analysis
	IPI_Histogram
	IPI_Quantify
	IPI_Centroid
	IPI_LineProfile
	IPI_BasicParticle
	IPI_Particle
	IPI_ParticleCoeffs
	IPI_ParticleDiscrim

	Geometry
	IPI_3DView
	IPI_Rotate
	IPI_Shift
	IPI_Symmetry

	Complex
	IPI_FFT
	IPI_InverseFFT
	IPI_ComplexConjugate
	IPI_ComplexFlipFrequency
	IPI_ComplexAttenuate
	IPI_ComplexTruncate
	IPI_ComplexAdd
	IPI_ComplexSubtract
	IPI_ComplexMultiply
	IPI_ComplexDivide
	IPI_ComplexImageToArray
	IPI_ArrayToComplexImage
	IPI_ComplexPlaneToArray
	IPI_ArrayToComplexPlane
	IPI_ExtractComplexPlane
	IPI_ReplaceComplexPlane

	Color
	IPI_ExtractColorPlanes
	IPI_ReplaceColorPlanes
	IPI_ColorEqualize
	IPI_ColorHistogram
	IPI_ColorThreshold
	IPI_ColorUserLookup
	IPI_GetColorPixel
	IPI_SetColorPixel
	IPI_GetColorLine
	IPI_SetColorLine
	IPI_ColorImageToArray
	IPI_ArrayToColorImage
	IPI_ColorConversion
	IPI_IntegerToColor
	IPI_ColorToInteger

	Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	Documentation Comment Form

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	W

	Figures
	Figure 2 1. Connectivity
	Figure 2 2. Example of Connectivity Processing
	Figure 2 3. Structuring Element
	Figure 2 4. Square vs. Hexagonal Frames
	Figure 2 5. Structuring Element Morphological Results

	Tables
	Table 2 1. IMAQ Vision for LabWindows/CVI Image Types
	Table 2 2. IMAQ Vision for LabWindows/CVI Function Types
	Table 4 1. Event/Tool Coordinates
	Table 6 1. Gradient 3x3
	Table 6 2. Gradient 5x5
	Table 6 3. Gradient 7x7
	Table 6 4. Laplacian 3x3
	Table 6 5. Laplacian 5x5
	Table 6 6. Laplacian 7x7
	Table 6 7. Smoothing 3x3
	Table 6 8. Smoothing 5x5
	Table 6 9. Smoothing 7x7
	Table 6 10. Gaussian 3x3
	Table 6 11. Gaussian 5x5
	Table 6 12. Gaussian 7x7

